Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891440844> ?p ?o ?g. }
- W2891440844 endingPage "788" @default.
- W2891440844 startingPage "772" @default.
- W2891440844 abstract "Most existing person re-identification (re-id) methods rely on supervised model learning on per-camera-pair manually labelled pairwise training data. This leads to poor scalability in practical re-id deployment due to the lack of exhaustive identity labelling of image positive and negative pairs for every camera pair. In this work, we address this problem by proposing an unsupervised re-id deep learning approach capable of incrementally discovering and exploiting the underlying re-id discriminative information from automatically generated person tracklet data from videos in an end-to-end model optimisation. We formulate a Tracklet Association Unsupervised Deep Learning (TAUDL) framework characterised by jointly learning per-camera (within-camera) tracklet association (labelling) and cross-camera tracklet correlation by maximising the discovery of most likely tracklet relationships across camera views. Extensive experiments demonstrate the superiority of the proposed TAUDL model over the state-of-the-art unsupervised and domain adaptation re-id methods using six person re-id benchmarking datasets." @default.
- W2891440844 created "2018-09-27" @default.
- W2891440844 creator A5002546182 @default.
- W2891440844 creator A5028643592 @default.
- W2891440844 creator A5039302902 @default.
- W2891440844 date "2018-01-01" @default.
- W2891440844 modified "2023-10-17" @default.
- W2891440844 title "Unsupervised Person Re-identification by Deep Learning Tracklet Association" @default.
- W2891440844 cites W1518138188 @default.
- W2891440844 cites W1596233070 @default.
- W2891440844 cites W1602182271 @default.
- W2891440844 cites W1928419358 @default.
- W2891440844 cites W1941498359 @default.
- W2891440844 cites W1963702692 @default.
- W2891440844 cites W1979260620 @default.
- W2891440844 cites W1979838576 @default.
- W2891440844 cites W1982925187 @default.
- W2891440844 cites W1999478721 @default.
- W2891440844 cites W2009907187 @default.
- W2891440844 cites W2070784585 @default.
- W2891440844 cites W2098807270 @default.
- W2891440844 cites W2143104527 @default.
- W2891440844 cites W2148214025 @default.
- W2891440844 cites W2194775991 @default.
- W2891440844 cites W2204750386 @default.
- W2891440844 cites W2256680489 @default.
- W2891440844 cites W2327827989 @default.
- W2891440844 cites W2342611082 @default.
- W2891440844 cites W2441160157 @default.
- W2891440844 cites W2465670578 @default.
- W2891440844 cites W2467139031 @default.
- W2891440844 cites W2471048925 @default.
- W2891440844 cites W2511556322 @default.
- W2891440844 cites W2511791013 @default.
- W2891440844 cites W2520433280 @default.
- W2891440844 cites W2520831962 @default.
- W2891440844 cites W2550374311 @default.
- W2891440844 cites W2550580161 @default.
- W2891440844 cites W2585635281 @default.
- W2891440844 cites W2586899202 @default.
- W2891440844 cites W2606377603 @default.
- W2891440844 cites W2620998106 @default.
- W2891440844 cites W2750183885 @default.
- W2891440844 cites W2768610172 @default.
- W2891440844 cites W2778652957 @default.
- W2891440844 cites W2788162446 @default.
- W2891440844 cites W2798874329 @default.
- W2891440844 cites W2884534488 @default.
- W2891440844 cites W2962850098 @default.
- W2891440844 cites W2962926870 @default.
- W2891440844 cites W2963216120 @default.
- W2891440844 cites W2963557071 @default.
- W2891440844 cites W2963721283 @default.
- W2891440844 cites W2963989829 @default.
- W2891440844 cites W2964178561 @default.
- W2891440844 cites W2964289004 @default.
- W2891440844 cites W3102668440 @default.
- W2891440844 cites W337961658 @default.
- W2891440844 cites W370501591 @default.
- W2891440844 cites W4317524344 @default.
- W2891440844 doi "https://doi.org/10.1007/978-3-030-01225-0_45" @default.
- W2891440844 hasPublicationYear "2018" @default.
- W2891440844 type Work @default.
- W2891440844 sameAs 2891440844 @default.
- W2891440844 citedByCount "141" @default.
- W2891440844 countsByYear W28914408442018 @default.
- W2891440844 countsByYear W28914408442019 @default.
- W2891440844 countsByYear W28914408442020 @default.
- W2891440844 countsByYear W28914408442021 @default.
- W2891440844 countsByYear W28914408442022 @default.
- W2891440844 countsByYear W28914408442023 @default.
- W2891440844 crossrefType "book-chapter" @default.
- W2891440844 hasAuthorship W2891440844A5002546182 @default.
- W2891440844 hasAuthorship W2891440844A5028643592 @default.
- W2891440844 hasAuthorship W2891440844A5039302902 @default.
- W2891440844 hasBestOaLocation W28914408442 @default.
- W2891440844 hasConcept C108583219 @default.
- W2891440844 hasConcept C111472728 @default.
- W2891440844 hasConcept C116834253 @default.
- W2891440844 hasConcept C119857082 @default.
- W2891440844 hasConcept C138885662 @default.
- W2891440844 hasConcept C142853389 @default.
- W2891440844 hasConcept C144133560 @default.
- W2891440844 hasConcept C153180895 @default.
- W2891440844 hasConcept C154945302 @default.
- W2891440844 hasConcept C162853370 @default.
- W2891440844 hasConcept C184898388 @default.
- W2891440844 hasConcept C41008148 @default.
- W2891440844 hasConcept C59822182 @default.
- W2891440844 hasConcept C8038995 @default.
- W2891440844 hasConcept C86251818 @default.
- W2891440844 hasConcept C86803240 @default.
- W2891440844 hasConcept C97931131 @default.
- W2891440844 hasConceptScore W2891440844C108583219 @default.
- W2891440844 hasConceptScore W2891440844C111472728 @default.
- W2891440844 hasConceptScore W2891440844C116834253 @default.
- W2891440844 hasConceptScore W2891440844C119857082 @default.
- W2891440844 hasConceptScore W2891440844C138885662 @default.