Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891442335> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2891442335 endingPage "208" @default.
- W2891442335 startingPage "199" @default.
- W2891442335 abstract "No AccessEngineering NotesCapture Dynamics and Net Closing Control for Tethered Space Net RobotYakun Zhao, Panfeng Huang and Fan ZhangYakun ZhaoNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China*Ph.D. Student, Research Center for Intelligent Robotics, National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics; .Search for more papers by this author, Panfeng HuangNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China†Professor, Research Center for Intelligent Robotics, National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics; (Corresponding Author).Search for more papers by this author and Fan ZhangNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China‡Associate Research Professor, Research Center for Intelligent Robotics, National Key Laboratory of Aerospace Flight Dynamics, School of Astronautics; .Search for more papers by this authorPublished Online:2 Sep 2018https://doi.org/10.2514/1.G003672SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Shan M., Guo J. and Gill E., “Review and Comparison of Active Space Debris Capturing and Removal Methods,” Progress in Aerospace Sciences, Vol. 80, Jan. 2016, pp. 18–32. doi:https://doi.org/10.1016/j.paerosci.2015.11.001 CrossrefGoogle Scholar[2] Ambrose R. O., Aldridge H., Askew R. S., Burridge R. R., Bluethmann W., Diftler M., Lovchik C., Magruder D. and Rehnmark F., “Robonaut: NASA’s Space Humanoid,” IEEE Intelligent Systems and Their Applications, Vol. 15, No. 4, 2000, pp. 57–63. doi:https://doi.org/10.1109/5254.867913 CrossrefGoogle Scholar[3] Huang P., Wang D., Meng Z., Zhang F. and Liu Z., “Impact Dynamic Modeling and Adaptive Target Capturing Control for Tethered Space Robots with Uncertainties,” IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 5, 2016, pp. 2260–2271. doi:https://doi.org/10.1109/TMECH.2016.2569466 CrossrefGoogle Scholar[4] Benvenuto R., Salvi S. and Lavagna M., “Dynamics Analysis and GNC Design of Flexible Systems for Space Debris Active Removal,” Acta Astronautica, Vol. 110, May–June 2015, pp. 247–265. doi:https://doi.org/10.1016/j.actaastro.2015.01.014 CrossrefGoogle Scholar[5] Shan M., Guo J. and Gill E., “Deployment Dynamics of Tethered-Net for Space Debris Removal,” Acta Astronautica, Vol. 132, No. 3, 2017, pp. 293–302. doi:https://doi.org/10.1016/j.actaastro.2017.01.001 CrossrefGoogle Scholar[6] Botta E. M., Sharf I., Misra A. K. and Teichmannb M., “On the Simulation of Tether-Nets for Space Debris Capture with Vortex Dynamics,” Acta Astronautica, Vol. 123, June–July 2016, pp. 91–102. doi:https://doi.org/10.1016/j.actaastro.2016.02.012 CrossrefGoogle Scholar[7] Benvenuto R., Lavagna M. and Salvi S., “Multibody Dynamics Driving GNC and System Design in Tethered Nets for Active Debris Removal,” Advances in Space Research, Vol. 58, No. 1, 2016, pp. 45–63. doi:https://doi.org/10.1016/j.asr.2016.04.015 CrossrefGoogle Scholar[8] Botta E. M., Sharf I. and Misra A. K., “Contact Dynamics Modeling and Simulation of Tether Nets for Space-Debris Capture,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 1, 2017, pp. 110–123. doi:https://doi.org/10.2514/1.G000677 LinkGoogle Scholar[9] Sharf I., Thomsen B., Botta E. M. and Misra A. K., “Experiments and Simulation of a Net Closing Mechanism for Tether-Net Capture of Space Debris,” Acta Astronautica, Vol. 139, No. 10, 2017, pp. 332–343. doi:https://doi.org/10.1016/j.actaastro.2017.07.026 CrossrefGoogle Scholar[10] Shan M., Guo J., Gill E. and Gołębiowski W., “Validation of Space Net Deployment Modeling Methods Using Parabolic Flight Experiment,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 1–9. doi:https://doi.org/10.2514/1.G002761 LinkGoogle Scholar[11] Huang P., Zhang F., Ma J., Meng Z. and Liu Z., “Dynamics and Configuration Control of the Maneuvering-Net Space Robot System,” Advances in Space Research, Vol. 55, No. 4, 2015, pp. 1004–1014. doi:https://doi.org/10.1016/j.asr.2014.11.009 CrossrefGoogle Scholar[12] Zhang F. and Huang P., “Releasing Dynamics and Stability Control of Maneuverable Tethered Space Net,” IEEE/ASME Transactions on Mechatronics, Vol. 22, No. 2, 2017, pp. 983–993. doi:https://doi.org/10.1109/TMECH.2016.2628052 CrossrefGoogle Scholar[13] Zhang F., Huang P., Meng Z., Zhang Y. and Liu Z., “Dynamics Analysis and Controller Design for Maneuverable Tethered Space Net Robot,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 11, 2017, pp. 1–16. doi:https://doi.org/10.2514/1.G002656 LinkGoogle Scholar[14] Shan M., Guo J. and Gill E., “Contact Dynamic Models of Space Debris Capturing Using a Net,” Acta Astronautica, Dec. 2017. doi:https://doi.org/10.1016/j.actaastro.2017.12.009 CrossrefGoogle Scholar[15] Gilardi G. and Sharf I., “Literature Survey of Contact Dynamics Modelling,” Mechanism and Machine Theory, Vol. 37, No. 10, 2002, pp. 1213–1239. doi:https://doi.org/10.1016/S0094-114X(02)00045-9 CrossrefGoogle Scholar[16] Tibert G. and Gardsback M., “Space Webs Final Report,” ESA, Advanced Concepts Team Rept. ACT-RPT-MAD-ARI-05-4109a, Noordwijk, The Netherlands, 2006. Google Scholar[17] Li P., Wang P., Ma J. and Peng X., “Non-Homogeneous Disturbance Observer-Based Second Order Sliding Mode Control,” 33rd Chinese Control Conference (CCC), IEEE Publ., Piscataway, NJ, 2014, pp. 2150–2154. doi:https://doi.org/10.1109/ChiCC.2014.6896964 Google Scholar[18] Levant A., “Non-Homogeneous Finite-Time-Convergent Differentiator,” Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, IEEE Publ., Piscataway, NJ, 2009, pp. 8399–8404. doi:https://doi.org/10.1109/CDC.2009.5400277 Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byDynamic Closing Point Determination for Space Debris Capturing via Tethered Space Net RobotIEEE Transactions on Aerospace and Electronic Systems, Vol. 58, No. 5Dynamics and configuration control of the Tethered Space Net Robot under a collision with high-speed debrisAdvances in Space Research, Vol. 70, No. 5Capture Dynamics and Control of a Flexible Net for Space Debris Removal1 June 2022 | Aerospace, Vol. 9, No. 6Collision response and obstacle avoidance of the tethered-space net robot system with non-target objects11 January 2022 | Aircraft Engineering and Aerospace Technology, Vol. 94, No. 5A simplified model for fast analysis of the deployment dynamics of tethered-net in spaceAdvances in Space Research, Vol. 68, No. 4Real time control of tethered satellite systems to de-orbit space debrisAerospace Science and Technology, Vol. 109Dynamics of a debris towing system with hierarchical tether architectureActa Astronautica, Vol. 177Validating the Deployment of a Novel Tether Design for Orbital Debris RemovalKevin Stadnyk and Steve Ulrich19 July 2020 | Journal of Spacecraft and Rockets, Vol. 57, No. 6Dynamics model and control simulation of the launching simulator for tether-netSimulation and tension control of a tether-actuated closing mechanism for net-based capture of space debrisActa Astronautica, Vol. 174Impulsive Super-Twisting Sliding Mode Control for Space Debris Capturing via Tethered Space Net RobotIEEE Transactions on Industrial Electronics, Vol. 67, No. 8Novel finite-time attitude control of postcapture spacecraft with input faults and quantizationAdvances in Space Research, Vol. 65, No. 1Concurrent Proximity Control of Servicing Spacecraft With an Uncontrolled TargetIEEE/ASME Transactions on Mechatronics, Vol. 24, No. 6 What's Popular Volume 42, Number 1January 2019 CrossmarkInformationCopyright © 2018 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresComputing, Information, and CommunicationData ScienceMechanical and Structural VibrationsMechanism and MachinesMultibody SystemRoboticsRobotsStructural Design and DevelopmentStructural EngineeringStructural Kinematics and DynamicsStructures, Design and Test KeywordsRobotsSliding Mode ControlPoisson's RatioContact DynamicsSatellitesSpace DebrisDamping CoefficientNumerical SimulationSpace EnvironmentNonlinear SystemsAcknowledgmentsThis study is supported by the National Science Fund for Distinguished Young Scholars of China (grant no. 61725303), the National Natural Science Foundation of China (grant no. 61773317), and the Fundamental Research Funds for the Central Universities of China (grant nos. 3102016BJJ03 and 3102017jg02005).PDF Received4 March 2018Accepted25 June 2018Published online2 September 2018" @default.
- W2891442335 created "2018-09-27" @default.
- W2891442335 creator A5053447705 @default.
- W2891442335 creator A5082779628 @default.
- W2891442335 creator A5091127758 @default.
- W2891442335 date "2019-01-01" @default.
- W2891442335 modified "2023-09-22" @default.
- W2891442335 title "Capture Dynamics and Net Closing Control for Tethered Space Net Robot" @default.
- W2891442335 cites W2060993479 @default.
- W2891442335 cites W2090974678 @default.
- W2891442335 cites W2094117851 @default.
- W2891442335 cites W2161636262 @default.
- W2891442335 cites W2176715885 @default.
- W2891442335 cites W2301434972 @default.
- W2891442335 cites W2336491623 @default.
- W2891442335 cites W2405050918 @default.
- W2891442335 cites W2552150415 @default.
- W2891442335 cites W2554721177 @default.
- W2891442335 cites W2568450667 @default.
- W2891442335 cites W2735333313 @default.
- W2891442335 cites W2736292037 @default.
- W2891442335 cites W2741364801 @default.
- W2891442335 cites W2772318680 @default.
- W2891442335 doi "https://doi.org/10.2514/1.g003672" @default.
- W2891442335 hasPublicationYear "2019" @default.
- W2891442335 type Work @default.
- W2891442335 sameAs 2891442335 @default.
- W2891442335 citedByCount "15" @default.
- W2891442335 countsByYear W28914423352019 @default.
- W2891442335 countsByYear W28914423352020 @default.
- W2891442335 countsByYear W28914423352021 @default.
- W2891442335 countsByYear W28914423352022 @default.
- W2891442335 countsByYear W28914423352023 @default.
- W2891442335 crossrefType "journal-article" @default.
- W2891442335 hasAuthorship W2891442335A5053447705 @default.
- W2891442335 hasAuthorship W2891442335A5082779628 @default.
- W2891442335 hasAuthorship W2891442335A5091127758 @default.
- W2891442335 hasConcept C10138342 @default.
- W2891442335 hasConcept C111919701 @default.
- W2891442335 hasConcept C121332964 @default.
- W2891442335 hasConcept C127413603 @default.
- W2891442335 hasConcept C14166107 @default.
- W2891442335 hasConcept C145912823 @default.
- W2891442335 hasConcept C146978453 @default.
- W2891442335 hasConcept C154945302 @default.
- W2891442335 hasConcept C162324750 @default.
- W2891442335 hasConcept C24890656 @default.
- W2891442335 hasConcept C2524010 @default.
- W2891442335 hasConcept C2775924081 @default.
- W2891442335 hasConcept C2778572836 @default.
- W2891442335 hasConcept C2778775528 @default.
- W2891442335 hasConcept C33923547 @default.
- W2891442335 hasConcept C41008148 @default.
- W2891442335 hasConcept C44154836 @default.
- W2891442335 hasConcept C47446073 @default.
- W2891442335 hasConcept C90509273 @default.
- W2891442335 hasConceptScore W2891442335C10138342 @default.
- W2891442335 hasConceptScore W2891442335C111919701 @default.
- W2891442335 hasConceptScore W2891442335C121332964 @default.
- W2891442335 hasConceptScore W2891442335C127413603 @default.
- W2891442335 hasConceptScore W2891442335C14166107 @default.
- W2891442335 hasConceptScore W2891442335C145912823 @default.
- W2891442335 hasConceptScore W2891442335C146978453 @default.
- W2891442335 hasConceptScore W2891442335C154945302 @default.
- W2891442335 hasConceptScore W2891442335C162324750 @default.
- W2891442335 hasConceptScore W2891442335C24890656 @default.
- W2891442335 hasConceptScore W2891442335C2524010 @default.
- W2891442335 hasConceptScore W2891442335C2775924081 @default.
- W2891442335 hasConceptScore W2891442335C2778572836 @default.
- W2891442335 hasConceptScore W2891442335C2778775528 @default.
- W2891442335 hasConceptScore W2891442335C33923547 @default.
- W2891442335 hasConceptScore W2891442335C41008148 @default.
- W2891442335 hasConceptScore W2891442335C44154836 @default.
- W2891442335 hasConceptScore W2891442335C47446073 @default.
- W2891442335 hasConceptScore W2891442335C90509273 @default.
- W2891442335 hasIssue "1" @default.
- W2891442335 hasLocation W28914423351 @default.
- W2891442335 hasOpenAccess W2891442335 @default.
- W2891442335 hasPrimaryLocation W28914423351 @default.
- W2891442335 hasRelatedWork W1976991523 @default.
- W2891442335 hasRelatedWork W2141873265 @default.
- W2891442335 hasRelatedWork W2324156847 @default.
- W2891442335 hasRelatedWork W2333374082 @default.
- W2891442335 hasRelatedWork W2468643883 @default.
- W2891442335 hasRelatedWork W2522853637 @default.
- W2891442335 hasRelatedWork W3120336140 @default.
- W2891442335 hasRelatedWork W4226359181 @default.
- W2891442335 hasRelatedWork W4233509383 @default.
- W2891442335 hasRelatedWork W4235799589 @default.
- W2891442335 hasVolume "42" @default.
- W2891442335 isParatext "false" @default.
- W2891442335 isRetracted "false" @default.
- W2891442335 magId "2891442335" @default.
- W2891442335 workType "article" @default.