Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891447304> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2891447304 abstract "As a successful deep model applied in image compressed sensing, the Compressed Sensing Network (CSNet) has demonstrated superior performance to the previous handcrafted models in both running speed and reconstruction quality. However, CSNet trains different models for different sampling rates that hinders it from practical usage since too many models need to store. In this paper, we propose multi-scale deep network for image compressed sensing. We still use a sampling network to learn the sampling operator and implement the compressed sampling process. Given the compressed measurements, the reconstruction network directly maps them to the desired reconstructed images. There are three main differences in comparison with CSNet. Firstly, this paper proposes to use an unified deep reconstruction network for all sampling rates that decreases large amount of storage requirements. Secondly, we redesign a better deep reconstruction network using the popular residual learning technology. Finally, we investigate an image local smooth prior based loss function to enhance image structural information. Extensive experimental results show that the proposed multi-scale deep network based image compressed sensing method outperforms many other state-of-the-art methods." @default.
- W2891447304 created "2018-09-27" @default.
- W2891447304 creator A5000546586 @default.
- W2891447304 creator A5035197326 @default.
- W2891447304 creator A5054864573 @default.
- W2891447304 creator A5079933574 @default.
- W2891447304 date "2018-10-01" @default.
- W2891447304 modified "2023-09-29" @default.
- W2891447304 title "Multi-Scale Deep Networks for Image Compressed Sensing" @default.
- W2891447304 cites W1539551155 @default.
- W2891447304 cites W1677182931 @default.
- W2891447304 cites W1930824406 @default.
- W2891447304 cites W2045518970 @default.
- W2891447304 cites W2045737896 @default.
- W2891447304 cites W2047920195 @default.
- W2891447304 cites W2110158442 @default.
- W2891447304 cites W2121927366 @default.
- W2891447304 cites W2129812098 @default.
- W2891447304 cites W2543013670 @default.
- W2891447304 cites W4250955649 @default.
- W2891447304 doi "https://doi.org/10.1109/icip.2018.8451352" @default.
- W2891447304 hasPublicationYear "2018" @default.
- W2891447304 type Work @default.
- W2891447304 sameAs 2891447304 @default.
- W2891447304 citedByCount "13" @default.
- W2891447304 countsByYear W28914473042019 @default.
- W2891447304 countsByYear W28914473042020 @default.
- W2891447304 countsByYear W28914473042021 @default.
- W2891447304 countsByYear W28914473042022 @default.
- W2891447304 countsByYear W28914473042023 @default.
- W2891447304 crossrefType "proceedings-article" @default.
- W2891447304 hasAuthorship W2891447304A5000546586 @default.
- W2891447304 hasAuthorship W2891447304A5035197326 @default.
- W2891447304 hasAuthorship W2891447304A5054864573 @default.
- W2891447304 hasAuthorship W2891447304A5079933574 @default.
- W2891447304 hasConcept C115961682 @default.
- W2891447304 hasConcept C124851039 @default.
- W2891447304 hasConcept C154945302 @default.
- W2891447304 hasConcept C205649164 @default.
- W2891447304 hasConcept C2778755073 @default.
- W2891447304 hasConcept C31972630 @default.
- W2891447304 hasConcept C41008148 @default.
- W2891447304 hasConcept C58640448 @default.
- W2891447304 hasConceptScore W2891447304C115961682 @default.
- W2891447304 hasConceptScore W2891447304C124851039 @default.
- W2891447304 hasConceptScore W2891447304C154945302 @default.
- W2891447304 hasConceptScore W2891447304C205649164 @default.
- W2891447304 hasConceptScore W2891447304C2778755073 @default.
- W2891447304 hasConceptScore W2891447304C31972630 @default.
- W2891447304 hasConceptScore W2891447304C41008148 @default.
- W2891447304 hasConceptScore W2891447304C58640448 @default.
- W2891447304 hasLocation W28914473041 @default.
- W2891447304 hasOpenAccess W2891447304 @default.
- W2891447304 hasPrimaryLocation W28914473041 @default.
- W2891447304 hasRelatedWork W1533292911 @default.
- W2891447304 hasRelatedWork W2005185696 @default.
- W2891447304 hasRelatedWork W2092957489 @default.
- W2891447304 hasRelatedWork W2130228941 @default.
- W2891447304 hasRelatedWork W2132132164 @default.
- W2891447304 hasRelatedWork W2161229648 @default.
- W2891447304 hasRelatedWork W2235753890 @default.
- W2891447304 hasRelatedWork W2314419244 @default.
- W2891447304 hasRelatedWork W2737780766 @default.
- W2891447304 hasRelatedWork W2993674027 @default.
- W2891447304 isParatext "false" @default.
- W2891447304 isRetracted "false" @default.
- W2891447304 magId "2891447304" @default.
- W2891447304 workType "article" @default.