Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891449483> ?p ?o ?g. }
- W2891449483 endingPage "166" @default.
- W2891449483 startingPage "156" @default.
- W2891449483 abstract "Abstract The resistance to hydrogen embrittlement (HE) of CrMnFeCoNi high-entropy alloy (HEA) at both room and cryogenic temperatures was examined through tensile experiments on specimens hydrogenated via cathodic electrochemical charging method. Two representative steels, i.e. 316L stainless steel (SS) and X80 pipeline steel (PS), were chosen for comparison due to their similar main constituent elements to CrMnFeCoNi HEA. Results show that the hydrogen pre-charged CrMnFeCoNi HEA has the smallest loss of ductility among the three materials at room temperature, while displays no reduction of elongation at 77 K, compared with the uncharged one. Fracture surfaces at both room and cryogenic temperatures of hydrogen pre-charged CrMnFeCoNi HEA are mainly composed of dimples, indicating ductile fractures, while brittle characteristics occur in pre-charged 316L SS and X80 PS. Typical deformation microstructure of the hydrogen pre-charged CrMnFeCoNi HEA at room temperature is tangled dislocations instead of highly dense dislocation walls (HDDWs) found in the pre-charged 316L SS. At 77 K, more deformation twins are formed in the both materials. Reasons for a higher resistance to HE of CrMnFeCoNi HEA at room temperature are attributed to the formation of less hydrogen trapping sites, thus a lower degree of hydrogen enrichment than 316L SS. While at 77 K, the atomic hydrogen is not able to promptly accumulate near these trapping sites due to its slow diffusion rate, which leads to strong HE resistance." @default.
- W2891449483 created "2018-09-27" @default.
- W2891449483 creator A5036834753 @default.
- W2891449483 creator A5048169804 @default.
- W2891449483 creator A5063898626 @default.
- W2891449483 date "2018-10-01" @default.
- W2891449483 modified "2023-10-15" @default.
- W2891449483 title "Strong resistance to hydrogen embrittlement of high-entropy alloy" @default.
- W2891449483 cites W1512145619 @default.
- W2891449483 cites W1521378483 @default.
- W2891449483 cites W153711712 @default.
- W2891449483 cites W1886626438 @default.
- W2891449483 cites W1894384596 @default.
- W2891449483 cites W1968985108 @default.
- W2891449483 cites W1985158430 @default.
- W2891449483 cites W1989674285 @default.
- W2891449483 cites W1994632370 @default.
- W2891449483 cites W1994937002 @default.
- W2891449483 cites W1998278560 @default.
- W2891449483 cites W2000158726 @default.
- W2891449483 cites W2003975937 @default.
- W2891449483 cites W2009747483 @default.
- W2891449483 cites W2013980730 @default.
- W2891449483 cites W2015101149 @default.
- W2891449483 cites W2017627514 @default.
- W2891449483 cites W2036216665 @default.
- W2891449483 cites W2039061417 @default.
- W2891449483 cites W2046203361 @default.
- W2891449483 cites W2046372336 @default.
- W2891449483 cites W2048371629 @default.
- W2891449483 cites W2052988028 @default.
- W2891449483 cites W2053272511 @default.
- W2891449483 cites W2058085399 @default.
- W2891449483 cites W2059731494 @default.
- W2891449483 cites W2060833593 @default.
- W2891449483 cites W2062876648 @default.
- W2891449483 cites W2063793439 @default.
- W2891449483 cites W2066578528 @default.
- W2891449483 cites W2073970452 @default.
- W2891449483 cites W2079362826 @default.
- W2891449483 cites W2079967968 @default.
- W2891449483 cites W2085870126 @default.
- W2891449483 cites W2089027191 @default.
- W2891449483 cites W2090832912 @default.
- W2891449483 cites W2092867560 @default.
- W2891449483 cites W2102875880 @default.
- W2891449483 cites W2113994205 @default.
- W2891449483 cites W2114747862 @default.
- W2891449483 cites W2116354316 @default.
- W2891449483 cites W2137653885 @default.
- W2891449483 cites W2145262250 @default.
- W2891449483 cites W2150914310 @default.
- W2891449483 cites W2166470440 @default.
- W2891449483 cites W2169281412 @default.
- W2891449483 cites W2215508082 @default.
- W2891449483 cites W2256057924 @default.
- W2891449483 cites W2408247608 @default.
- W2891449483 cites W2483357472 @default.
- W2891449483 cites W2534691303 @default.
- W2891449483 cites W2596748350 @default.
- W2891449483 cites W2603263208 @default.
- W2891449483 cites W2615508695 @default.
- W2891449483 cites W2617125260 @default.
- W2891449483 cites W2767701992 @default.
- W2891449483 cites W2772321386 @default.
- W2891449483 cites W2774518900 @default.
- W2891449483 cites W2789655054 @default.
- W2891449483 cites W2792070668 @default.
- W2891449483 cites W2793593771 @default.
- W2891449483 cites W2810696792 @default.
- W2891449483 cites W4250213126 @default.
- W2891449483 doi "https://doi.org/10.1016/j.msea.2018.08.101" @default.
- W2891449483 hasPublicationYear "2018" @default.
- W2891449483 type Work @default.
- W2891449483 sameAs 2891449483 @default.
- W2891449483 citedByCount "62" @default.
- W2891449483 countsByYear W28914494832019 @default.
- W2891449483 countsByYear W28914494832020 @default.
- W2891449483 countsByYear W28914494832021 @default.
- W2891449483 countsByYear W28914494832022 @default.
- W2891449483 countsByYear W28914494832023 @default.
- W2891449483 crossrefType "journal-article" @default.
- W2891449483 hasAuthorship W2891449483A5036834753 @default.
- W2891449483 hasAuthorship W2891449483A5048169804 @default.
- W2891449483 hasAuthorship W2891449483A5063898626 @default.
- W2891449483 hasConcept C142282041 @default.
- W2891449483 hasConcept C178790620 @default.
- W2891449483 hasConcept C185592680 @default.
- W2891449483 hasConcept C18903297 @default.
- W2891449483 hasConcept C191897082 @default.
- W2891449483 hasConcept C192562407 @default.
- W2891449483 hasConcept C20625102 @default.
- W2891449483 hasConcept C2780026712 @default.
- W2891449483 hasConcept C512968161 @default.
- W2891449483 hasConcept C57473165 @default.
- W2891449483 hasConcept C86803240 @default.
- W2891449483 hasConcept C92621854 @default.
- W2891449483 hasConceptScore W2891449483C142282041 @default.