Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891452743> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2891452743 abstract "Over the years, there has be considerable progress in using condition monitoring of industrial assets to detect and predict failures. However, there are not many papers using real field data to validate such approaches. Our goal is to provide a proof-of-concept, which shows that the condition of industrial assets can be predicted using machine learning applied to field data from an industrial plant. In this paper, an extensive case study based on vibration monitoring is presented. Data collected from 30 industrial pumps in a chemical plant over a 2.5-year period is used to validate the concept. To do so, metrics derived from vibration data are predicted up to 7 days ahead using the well-established and quick-to-use Random Forest algorithm. The model's performance is benchmarked against a standard persistence technique. We detail the pre-processing steps taken to prepare the data for machine learning. In doing so, insights gained from the challenges that arise when applying machine learning to real-world industrial data are also mentioned. For some failures, we also physically verified their root-causes, which showed that such failures could have been prevented with reliable predictions. Thus, our findings are particularly useful for those interested in the applicability of machine learning in an industrial context." @default.
- W2891452743 created "2018-09-27" @default.
- W2891452743 creator A5000984875 @default.
- W2891452743 creator A5010310217 @default.
- W2891452743 creator A5012169898 @default.
- W2891452743 creator A5021921398 @default.
- W2891452743 creator A5056918215 @default.
- W2891452743 creator A5085624152 @default.
- W2891452743 date "2018-07-01" @default.
- W2891452743 modified "2023-10-18" @default.
- W2891452743 title "An Industrial Case Study Using Vibration Data and Machine Learning to Predict Asset Health" @default.
- W2891452743 cites W2011643344 @default.
- W2891452743 cites W2042060284 @default.
- W2891452743 cites W2162602792 @default.
- W2891452743 cites W2164359971 @default.
- W2891452743 cites W2564947831 @default.
- W2891452743 cites W2581853886 @default.
- W2891452743 cites W2604523962 @default.
- W2891452743 cites W2619304139 @default.
- W2891452743 cites W2740570963 @default.
- W2891452743 doi "https://doi.org/10.1109/cbi.2018.00028" @default.
- W2891452743 hasPublicationYear "2018" @default.
- W2891452743 type Work @default.
- W2891452743 sameAs 2891452743 @default.
- W2891452743 citedByCount "25" @default.
- W2891452743 countsByYear W28914527432019 @default.
- W2891452743 countsByYear W28914527432020 @default.
- W2891452743 countsByYear W28914527432021 @default.
- W2891452743 countsByYear W28914527432022 @default.
- W2891452743 countsByYear W28914527432023 @default.
- W2891452743 crossrefType "proceedings-article" @default.
- W2891452743 hasAuthorship W2891452743A5000984875 @default.
- W2891452743 hasAuthorship W2891452743A5010310217 @default.
- W2891452743 hasAuthorship W2891452743A5012169898 @default.
- W2891452743 hasAuthorship W2891452743A5021921398 @default.
- W2891452743 hasAuthorship W2891452743A5056918215 @default.
- W2891452743 hasAuthorship W2891452743A5085624152 @default.
- W2891452743 hasConcept C119599485 @default.
- W2891452743 hasConcept C119857082 @default.
- W2891452743 hasConcept C124101348 @default.
- W2891452743 hasConcept C127413603 @default.
- W2891452743 hasConcept C151730666 @default.
- W2891452743 hasConcept C154945302 @default.
- W2891452743 hasConcept C202444582 @default.
- W2891452743 hasConcept C2775846686 @default.
- W2891452743 hasConcept C2779343474 @default.
- W2891452743 hasConcept C33923547 @default.
- W2891452743 hasConcept C38652104 @default.
- W2891452743 hasConcept C41008148 @default.
- W2891452743 hasConcept C76178495 @default.
- W2891452743 hasConcept C86803240 @default.
- W2891452743 hasConcept C9652623 @default.
- W2891452743 hasConceptScore W2891452743C119599485 @default.
- W2891452743 hasConceptScore W2891452743C119857082 @default.
- W2891452743 hasConceptScore W2891452743C124101348 @default.
- W2891452743 hasConceptScore W2891452743C127413603 @default.
- W2891452743 hasConceptScore W2891452743C151730666 @default.
- W2891452743 hasConceptScore W2891452743C154945302 @default.
- W2891452743 hasConceptScore W2891452743C202444582 @default.
- W2891452743 hasConceptScore W2891452743C2775846686 @default.
- W2891452743 hasConceptScore W2891452743C2779343474 @default.
- W2891452743 hasConceptScore W2891452743C33923547 @default.
- W2891452743 hasConceptScore W2891452743C38652104 @default.
- W2891452743 hasConceptScore W2891452743C41008148 @default.
- W2891452743 hasConceptScore W2891452743C76178495 @default.
- W2891452743 hasConceptScore W2891452743C86803240 @default.
- W2891452743 hasConceptScore W2891452743C9652623 @default.
- W2891452743 hasLocation W28914527431 @default.
- W2891452743 hasOpenAccess W2891452743 @default.
- W2891452743 hasPrimaryLocation W28914527431 @default.
- W2891452743 hasRelatedWork W2961085424 @default.
- W2891452743 hasRelatedWork W3046775127 @default.
- W2891452743 hasRelatedWork W3170094116 @default.
- W2891452743 hasRelatedWork W4205958290 @default.
- W2891452743 hasRelatedWork W4285260836 @default.
- W2891452743 hasRelatedWork W4286629047 @default.
- W2891452743 hasRelatedWork W4306321456 @default.
- W2891452743 hasRelatedWork W4306674287 @default.
- W2891452743 hasRelatedWork W4386462264 @default.
- W2891452743 hasRelatedWork W4224009465 @default.
- W2891452743 isParatext "false" @default.
- W2891452743 isRetracted "false" @default.
- W2891452743 magId "2891452743" @default.
- W2891452743 workType "article" @default.