Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891454102> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2891454102 endingPage "i933" @default.
- W2891454102 startingPage "i927" @default.
- W2891454102 abstract "Abstract Motivation Inferring a gene regulatory network from time-series gene expression data is a fundamental problem in systems biology, and many methods have been proposed. However, most of them were not efficient in inferring regulatory relations involved by a large number of genes because they limited the number of regulatory genes or computed an approximated reliability of multivariate relations. Therefore, an improved method is needed to efficiently search more generalized and scalable regulatory relations. Results In this study, we propose a genetic algorithm-based Boolean network inference (GABNI) method which can search an optimal Boolean regulatory function of a large number of regulatory genes. For an efficient search, it solves the problem in two stages. GABNI first exploits an existing method, a mutual information-based Boolean network inference (MIBNI), because it can quickly find an optimal solution in a small-scale inference problem. When MIBNI fails to find an optimal solution, a genetic algorithm (GA) is applied to search an optimal set of regulatory genes in a wider solution space. In particular, we modified a typical GA framework to efficiently reduce a search space. We compared GABNI with four well-known inference methods through extensive simulations on both the artificial and the real gene expression datasets. Our results demonstrated that GABNI significantly outperformed them in both structural and dynamics accuracies. Conclusion The proposed method is an efficient and scalable tool to infer a Boolean network from time-series gene expression data. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2891454102 created "2018-09-27" @default.
- W2891454102 creator A5044605708 @default.
- W2891454102 creator A5088493382 @default.
- W2891454102 date "2018-09-01" @default.
- W2891454102 modified "2023-10-06" @default.
- W2891454102 title "A Boolean network inference from time-series gene expression data using a genetic algorithm" @default.
- W2891454102 cites W1600339875 @default.
- W2891454102 cites W1971224531 @default.
- W2891454102 cites W2008620264 @default.
- W2891454102 cites W2032630997 @default.
- W2891454102 cites W2044525257 @default.
- W2891454102 cites W2053961182 @default.
- W2891454102 cites W2076513103 @default.
- W2891454102 cites W2106555403 @default.
- W2891454102 cites W2115813074 @default.
- W2891454102 cites W2139997707 @default.
- W2891454102 cites W2143076232 @default.
- W2891454102 cites W2157121418 @default.
- W2891454102 cites W2161922735 @default.
- W2891454102 cites W2586478664 @default.
- W2891454102 cites W3099289621 @default.
- W2891454102 doi "https://doi.org/10.1093/bioinformatics/bty584" @default.
- W2891454102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30423074" @default.
- W2891454102 hasPublicationYear "2018" @default.
- W2891454102 type Work @default.
- W2891454102 sameAs 2891454102 @default.
- W2891454102 citedByCount "41" @default.
- W2891454102 countsByYear W28914541022019 @default.
- W2891454102 countsByYear W28914541022020 @default.
- W2891454102 countsByYear W28914541022021 @default.
- W2891454102 countsByYear W28914541022022 @default.
- W2891454102 countsByYear W28914541022023 @default.
- W2891454102 crossrefType "journal-article" @default.
- W2891454102 hasAuthorship W2891454102A5044605708 @default.
- W2891454102 hasAuthorship W2891454102A5088493382 @default.
- W2891454102 hasBestOaLocation W28914541021 @default.
- W2891454102 hasConcept C104317684 @default.
- W2891454102 hasConcept C11413529 @default.
- W2891454102 hasConcept C119857082 @default.
- W2891454102 hasConcept C124101348 @default.
- W2891454102 hasConcept C134444547 @default.
- W2891454102 hasConcept C143724316 @default.
- W2891454102 hasConcept C150194340 @default.
- W2891454102 hasConcept C151730666 @default.
- W2891454102 hasConcept C154945302 @default.
- W2891454102 hasConcept C187455244 @default.
- W2891454102 hasConcept C2776214188 @default.
- W2891454102 hasConcept C41008148 @default.
- W2891454102 hasConcept C48044578 @default.
- W2891454102 hasConcept C54355233 @default.
- W2891454102 hasConcept C67339327 @default.
- W2891454102 hasConcept C70721500 @default.
- W2891454102 hasConcept C77088390 @default.
- W2891454102 hasConcept C86803240 @default.
- W2891454102 hasConcept C8880873 @default.
- W2891454102 hasConceptScore W2891454102C104317684 @default.
- W2891454102 hasConceptScore W2891454102C11413529 @default.
- W2891454102 hasConceptScore W2891454102C119857082 @default.
- W2891454102 hasConceptScore W2891454102C124101348 @default.
- W2891454102 hasConceptScore W2891454102C134444547 @default.
- W2891454102 hasConceptScore W2891454102C143724316 @default.
- W2891454102 hasConceptScore W2891454102C150194340 @default.
- W2891454102 hasConceptScore W2891454102C151730666 @default.
- W2891454102 hasConceptScore W2891454102C154945302 @default.
- W2891454102 hasConceptScore W2891454102C187455244 @default.
- W2891454102 hasConceptScore W2891454102C2776214188 @default.
- W2891454102 hasConceptScore W2891454102C41008148 @default.
- W2891454102 hasConceptScore W2891454102C48044578 @default.
- W2891454102 hasConceptScore W2891454102C54355233 @default.
- W2891454102 hasConceptScore W2891454102C67339327 @default.
- W2891454102 hasConceptScore W2891454102C70721500 @default.
- W2891454102 hasConceptScore W2891454102C77088390 @default.
- W2891454102 hasConceptScore W2891454102C86803240 @default.
- W2891454102 hasConceptScore W2891454102C8880873 @default.
- W2891454102 hasIssue "17" @default.
- W2891454102 hasLocation W28914541021 @default.
- W2891454102 hasLocation W28914541022 @default.
- W2891454102 hasOpenAccess W2891454102 @default.
- W2891454102 hasPrimaryLocation W28914541021 @default.
- W2891454102 hasRelatedWork W2005936873 @default.
- W2891454102 hasRelatedWork W2013282292 @default.
- W2891454102 hasRelatedWork W2094738703 @default.
- W2891454102 hasRelatedWork W2140158840 @default.
- W2891454102 hasRelatedWork W2295751678 @default.
- W2891454102 hasRelatedWork W2891454102 @default.
- W2891454102 hasRelatedWork W2997831639 @default.
- W2891454102 hasRelatedWork W3114111133 @default.
- W2891454102 hasRelatedWork W3205895047 @default.
- W2891454102 hasRelatedWork W4290787198 @default.
- W2891454102 hasVolume "34" @default.
- W2891454102 isParatext "false" @default.
- W2891454102 isRetracted "false" @default.
- W2891454102 magId "2891454102" @default.
- W2891454102 workType "article" @default.