Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891457579> ?p ?o ?g. }
- W2891457579 endingPage "1939" @default.
- W2891457579 startingPage "1928" @default.
- W2891457579 abstract "Recognizing the factors that cause stress is a crucial step toward early detection of stressors. In this regard, several studies make an effort to recognize individuals' stress using an Electroencephalogram (EEG). However, current EEG-based stress recognition frameworks have several drawbacks. First, they are mostly designed to recognize individuals' stress only in a controlled laboratory environment. Second, they do not take into account the changes in the EEG signals of different subjects under the same stressors. Third, most of the current stress recognition algorithms occur in an offline setting. To address these issues, this study proposes an EEG-based stress recognition framework that takes into account each subject's brainwave patterns to train the stress recognition classifier and continuously update its classifier based on new input signals in near real-time. The proposed framework first removes EEG signal artifacts, then extracts a broad range of EEG signal features, and finally applies different online multitask learning (OMTL) algorithms to recognize individuals' stress in near real time. The proposed framework was applied on the EEG collected in two environments-first on the EEG collected in a controlled lab environment using a wired-EEG and second on the EEG collected at in the field using a wearable EEG device. The OMTL-VonNeuman method resulted in the best prediction accuracy on both datasets (71.14% on the first dataset and 77.61% on second) among all tested algorithms. The proposed stress recognition framework continuously updates its classifier and therefore contributes to stress recognition for new stressful situations that are beyond the range of predefined stressful conditions in near real time both in a controlled lab environment and at real job sites." @default.
- W2891457579 created "2018-09-27" @default.
- W2891457579 creator A5035070058 @default.
- W2891457579 creator A5078967045 @default.
- W2891457579 creator A5090060830 @default.
- W2891457579 date "2019-09-01" @default.
- W2891457579 modified "2023-09-29" @default.
- W2891457579 title "A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL)" @default.
- W2891457579 cites W170792860 @default.
- W2891457579 cites W1957652415 @default.
- W2891457579 cites W1970763933 @default.
- W2891457579 cites W1972110985 @default.
- W2891457579 cites W1990449050 @default.
- W2891457579 cites W2002055708 @default.
- W2891457579 cites W2006641965 @default.
- W2891457579 cites W2013194433 @default.
- W2891457579 cites W2019524683 @default.
- W2891457579 cites W2023059558 @default.
- W2891457579 cites W2029264676 @default.
- W2891457579 cites W2030290736 @default.
- W2891457579 cites W2031590924 @default.
- W2891457579 cites W2035305937 @default.
- W2891457579 cites W2045711728 @default.
- W2891457579 cites W2054560711 @default.
- W2891457579 cites W2054836645 @default.
- W2891457579 cites W2055493013 @default.
- W2891457579 cites W2055973190 @default.
- W2891457579 cites W2056925087 @default.
- W2891457579 cites W2065588278 @default.
- W2891457579 cites W2066738580 @default.
- W2891457579 cites W2074589301 @default.
- W2891457579 cites W2078464983 @default.
- W2891457579 cites W208087932 @default.
- W2891457579 cites W2082239877 @default.
- W2891457579 cites W2092157603 @default.
- W2891457579 cites W2092354644 @default.
- W2891457579 cites W2092481091 @default.
- W2891457579 cites W2092649222 @default.
- W2891457579 cites W2098050476 @default.
- W2891457579 cites W2104007404 @default.
- W2891457579 cites W2110293440 @default.
- W2891457579 cites W2118543857 @default.
- W2891457579 cites W2126171190 @default.
- W2891457579 cites W2128220430 @default.
- W2891457579 cites W2128495200 @default.
- W2891457579 cites W2133430753 @default.
- W2891457579 cites W2136857199 @default.
- W2891457579 cites W2138231644 @default.
- W2891457579 cites W2149628368 @default.
- W2891457579 cites W2165611870 @default.
- W2891457579 cites W2167557160 @default.
- W2891457579 cites W2167575933 @default.
- W2891457579 cites W2243147875 @default.
- W2891457579 cites W2285537656 @default.
- W2891457579 cites W2301606162 @default.
- W2891457579 cites W2417886788 @default.
- W2891457579 cites W2533339693 @default.
- W2891457579 cites W2545537737 @default.
- W2891457579 cites W2605382099 @default.
- W2891457579 cites W2606321326 @default.
- W2891457579 cites W2614060903 @default.
- W2891457579 cites W2625819612 @default.
- W2891457579 cites W2765275511 @default.
- W2891457579 cites W2766962474 @default.
- W2891457579 cites W2800154372 @default.
- W2891457579 cites W2807107191 @default.
- W2891457579 cites W2884642211 @default.
- W2891457579 cites W2885544407 @default.
- W2891457579 cites W2886710163 @default.
- W2891457579 cites W2897982924 @default.
- W2891457579 cites W3104240813 @default.
- W2891457579 cites W3104594972 @default.
- W2891457579 cites W3125074449 @default.
- W2891457579 cites W4249247926 @default.
- W2891457579 cites W4310638450 @default.
- W2891457579 cites W76639474 @default.
- W2891457579 doi "https://doi.org/10.1109/jbhi.2018.2870963" @default.
- W2891457579 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30235150" @default.
- W2891457579 hasPublicationYear "2019" @default.
- W2891457579 type Work @default.
- W2891457579 sameAs 2891457579 @default.
- W2891457579 citedByCount "50" @default.
- W2891457579 countsByYear W28914575792019 @default.
- W2891457579 countsByYear W28914575792020 @default.
- W2891457579 countsByYear W28914575792021 @default.
- W2891457579 countsByYear W28914575792022 @default.
- W2891457579 countsByYear W28914575792023 @default.
- W2891457579 crossrefType "journal-article" @default.
- W2891457579 hasAuthorship W2891457579A5035070058 @default.
- W2891457579 hasAuthorship W2891457579A5078967045 @default.
- W2891457579 hasAuthorship W2891457579A5090060830 @default.
- W2891457579 hasConcept C118552586 @default.
- W2891457579 hasConcept C119857082 @default.
- W2891457579 hasConcept C138885662 @default.
- W2891457579 hasConcept C149635348 @default.
- W2891457579 hasConcept C150594956 @default.
- W2891457579 hasConcept C153180895 @default.
- W2891457579 hasConcept C154945302 @default.