Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891461957> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2891461957 abstract "Customers are usually exposed to online digital advertisement channels, such as email marketing, display advertising, paid search engine marketing, along their way to purchase or subscribe products( aka. conversion). The marketers track all the customer journey data and try to measure the effectiveness of each advertising channel. The inference about the influence of each channel plays an important role in budget allocation and inventory pricing decisions. Several simplistic rule-based strategies and data-driven algorithmic strategies have been widely used in marketing field, but they do not address the issues, such as channel interaction, time dependency, user characteristics. In this paper, we propose a novel attribution algorithm based on deep learning to assess the impact of each advertising channel. We present Deep Neural Net With Attention multi-touch attribution model (DNAMTA) model in a supervised learning fashion of predicting if a series of events leads to conversion, and it leads us to have a deep understanding of the dynamic interaction effects between media channels. DNAMTA also incorporates user-context information, such as user demographics and behavior, as control variables to reduce the estimation biases of media effects. We used computational experiment of large real world marketing dataset to demonstrate that our proposed model is superior to existing methods in both conversion prediction and media channel influence evaluation." @default.
- W2891461957 created "2018-09-27" @default.
- W2891461957 creator A5035187499 @default.
- W2891461957 creator A5044074069 @default.
- W2891461957 creator A5050232781 @default.
- W2891461957 creator A5067332736 @default.
- W2891461957 creator A5069722364 @default.
- W2891461957 date "2018-09-06" @default.
- W2891461957 modified "2023-09-23" @default.
- W2891461957 title "Deep Neural Net with Attention for Multi-channel Multi-touch Attribution" @default.
- W2891461957 cites W2011256240 @default.
- W2891461957 cites W2027839911 @default.
- W2891461957 cites W2047995569 @default.
- W2891461957 cites W2604379080 @default.
- W2891461957 cites W3124849816 @default.
- W2891461957 cites W1543099905 @default.
- W2891461957 hasPublicationYear "2018" @default.
- W2891461957 type Work @default.
- W2891461957 sameAs 2891461957 @default.
- W2891461957 citedByCount "4" @default.
- W2891461957 countsByYear W28914619572019 @default.
- W2891461957 countsByYear W28914619572020 @default.
- W2891461957 countsByYear W28914619572021 @default.
- W2891461957 crossrefType "posted-content" @default.
- W2891461957 hasAuthorship W2891461957A5035187499 @default.
- W2891461957 hasAuthorship W2891461957A5044074069 @default.
- W2891461957 hasAuthorship W2891461957A5050232781 @default.
- W2891461957 hasAuthorship W2891461957A5067332736 @default.
- W2891461957 hasAuthorship W2891461957A5069722364 @default.
- W2891461957 hasConcept C108583219 @default.
- W2891461957 hasConcept C110875604 @default.
- W2891461957 hasConcept C119857082 @default.
- W2891461957 hasConcept C127162648 @default.
- W2891461957 hasConcept C136764020 @default.
- W2891461957 hasConcept C151730666 @default.
- W2891461957 hasConcept C154945302 @default.
- W2891461957 hasConcept C2522767166 @default.
- W2891461957 hasConcept C2776214188 @default.
- W2891461957 hasConcept C2777999536 @default.
- W2891461957 hasConcept C2779343474 @default.
- W2891461957 hasConcept C31258907 @default.
- W2891461957 hasConcept C41008148 @default.
- W2891461957 hasConcept C50644808 @default.
- W2891461957 hasConcept C512338625 @default.
- W2891461957 hasConcept C86803240 @default.
- W2891461957 hasConceptScore W2891461957C108583219 @default.
- W2891461957 hasConceptScore W2891461957C110875604 @default.
- W2891461957 hasConceptScore W2891461957C119857082 @default.
- W2891461957 hasConceptScore W2891461957C127162648 @default.
- W2891461957 hasConceptScore W2891461957C136764020 @default.
- W2891461957 hasConceptScore W2891461957C151730666 @default.
- W2891461957 hasConceptScore W2891461957C154945302 @default.
- W2891461957 hasConceptScore W2891461957C2522767166 @default.
- W2891461957 hasConceptScore W2891461957C2776214188 @default.
- W2891461957 hasConceptScore W2891461957C2777999536 @default.
- W2891461957 hasConceptScore W2891461957C2779343474 @default.
- W2891461957 hasConceptScore W2891461957C31258907 @default.
- W2891461957 hasConceptScore W2891461957C41008148 @default.
- W2891461957 hasConceptScore W2891461957C50644808 @default.
- W2891461957 hasConceptScore W2891461957C512338625 @default.
- W2891461957 hasConceptScore W2891461957C86803240 @default.
- W2891461957 hasLocation W28914619571 @default.
- W2891461957 hasOpenAccess W2891461957 @default.
- W2891461957 hasPrimaryLocation W28914619571 @default.
- W2891461957 hasRelatedWork W111059156 @default.
- W2891461957 hasRelatedWork W1530985966 @default.
- W2891461957 hasRelatedWork W1897792657 @default.
- W2891461957 hasRelatedWork W1976474726 @default.
- W2891461957 hasRelatedWork W1991332482 @default.
- W2891461957 hasRelatedWork W2027839911 @default.
- W2891461957 hasRelatedWork W2070151446 @default.
- W2891461957 hasRelatedWork W2377681394 @default.
- W2891461957 hasRelatedWork W2546691848 @default.
- W2891461957 hasRelatedWork W2762131167 @default.
- W2891461957 hasRelatedWork W2765477361 @default.
- W2891461957 hasRelatedWork W2893218154 @default.
- W2891461957 hasRelatedWork W2900653147 @default.
- W2891461957 hasRelatedWork W2949231373 @default.
- W2891461957 hasRelatedWork W3088445992 @default.
- W2891461957 hasRelatedWork W3092697871 @default.
- W2891461957 hasRelatedWork W3093888250 @default.
- W2891461957 hasRelatedWork W3138854959 @default.
- W2891461957 hasRelatedWork W3161512678 @default.
- W2891461957 hasRelatedWork W3167957332 @default.
- W2891461957 isParatext "false" @default.
- W2891461957 isRetracted "false" @default.
- W2891461957 magId "2891461957" @default.
- W2891461957 workType "article" @default.