Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891462694> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2891462694 endingPage "434" @default.
- W2891462694 startingPage "427" @default.
- W2891462694 abstract "Drivers' route choice model is essential in transportation software such as navigation, fleet management, and simulation, where the random utility models (RUM) have dominated for years. The authors investigate here whether machine learning (ML) models could be applied into this field, and whether these approaches outperform the traditional models in goodness-of-fit and prediction. The application framework and data structure are proposed, where the challenging problems lie in: (i) to pool data from multiple origin–destination pairs; and (ii) to interpret results for behaviour analysis. All RUM and ML models are applied in a real network. Results suggest that the random forest, one of the ML models, has satisfying performances with acceptable computation time, making it suitable for large network and real-time analysis. This study shows that the ML models can be adopted for behaviour analysis, such as to prioritise the importance of variables, compute the elasticity, and forecast for scenarios. Future directions on combining the RUM and ML models are discussed." @default.
- W2891462694 created "2018-09-27" @default.
- W2891462694 creator A5020506167 @default.
- W2891462694 creator A5027835055 @default.
- W2891462694 creator A5037204981 @default.
- W2891462694 creator A5064858556 @default.
- W2891462694 date "2018-09-28" @default.
- W2891462694 modified "2023-10-12" @default.
- W2891462694 title "Understanding drivers' route choice behaviours in the urban network with machine learning models" @default.
- W2891462694 cites W1859757623 @default.
- W2891462694 cites W1962662082 @default.
- W2891462694 cites W1972916106 @default.
- W2891462694 cites W2011282943 @default.
- W2891462694 cites W2022242289 @default.
- W2891462694 cites W2024972882 @default.
- W2891462694 cites W2027739325 @default.
- W2891462694 cites W2030169809 @default.
- W2891462694 cites W2050592678 @default.
- W2891462694 cites W2050693813 @default.
- W2891462694 cites W2073304306 @default.
- W2891462694 cites W2074841350 @default.
- W2891462694 cites W2080842618 @default.
- W2891462694 cites W2087441815 @default.
- W2891462694 cites W2104700613 @default.
- W2891462694 cites W2116660956 @default.
- W2891462694 cites W2119791987 @default.
- W2891462694 cites W2137344397 @default.
- W2891462694 cites W2167889269 @default.
- W2891462694 cites W2283115560 @default.
- W2891462694 cites W2575125657 @default.
- W2891462694 cites W2599552708 @default.
- W2891462694 cites W2735546984 @default.
- W2891462694 cites W2754981972 @default.
- W2891462694 cites W2903870477 @default.
- W2891462694 cites W4254070372 @default.
- W2891462694 doi "https://doi.org/10.1049/iet-its.2018.5190" @default.
- W2891462694 hasPublicationYear "2018" @default.
- W2891462694 type Work @default.
- W2891462694 sameAs 2891462694 @default.
- W2891462694 citedByCount "11" @default.
- W2891462694 countsByYear W28914626942019 @default.
- W2891462694 countsByYear W28914626942020 @default.
- W2891462694 countsByYear W28914626942021 @default.
- W2891462694 countsByYear W28914626942022 @default.
- W2891462694 countsByYear W28914626942023 @default.
- W2891462694 crossrefType "journal-article" @default.
- W2891462694 hasAuthorship W2891462694A5020506167 @default.
- W2891462694 hasAuthorship W2891462694A5027835055 @default.
- W2891462694 hasAuthorship W2891462694A5037204981 @default.
- W2891462694 hasAuthorship W2891462694A5064858556 @default.
- W2891462694 hasConcept C11413529 @default.
- W2891462694 hasConcept C119857082 @default.
- W2891462694 hasConcept C132480984 @default.
- W2891462694 hasConcept C154945302 @default.
- W2891462694 hasConcept C169258074 @default.
- W2891462694 hasConcept C199360897 @default.
- W2891462694 hasConcept C202444582 @default.
- W2891462694 hasConcept C2777904410 @default.
- W2891462694 hasConcept C33923547 @default.
- W2891462694 hasConcept C41008148 @default.
- W2891462694 hasConcept C45374587 @default.
- W2891462694 hasConcept C45804977 @default.
- W2891462694 hasConcept C9652623 @default.
- W2891462694 hasConceptScore W2891462694C11413529 @default.
- W2891462694 hasConceptScore W2891462694C119857082 @default.
- W2891462694 hasConceptScore W2891462694C132480984 @default.
- W2891462694 hasConceptScore W2891462694C154945302 @default.
- W2891462694 hasConceptScore W2891462694C169258074 @default.
- W2891462694 hasConceptScore W2891462694C199360897 @default.
- W2891462694 hasConceptScore W2891462694C202444582 @default.
- W2891462694 hasConceptScore W2891462694C2777904410 @default.
- W2891462694 hasConceptScore W2891462694C33923547 @default.
- W2891462694 hasConceptScore W2891462694C41008148 @default.
- W2891462694 hasConceptScore W2891462694C45374587 @default.
- W2891462694 hasConceptScore W2891462694C45804977 @default.
- W2891462694 hasConceptScore W2891462694C9652623 @default.
- W2891462694 hasFunder F4320321001 @default.
- W2891462694 hasIssue "3" @default.
- W2891462694 hasLocation W28914626941 @default.
- W2891462694 hasOpenAccess W2891462694 @default.
- W2891462694 hasPrimaryLocation W28914626941 @default.
- W2891462694 hasRelatedWork W2911455822 @default.
- W2891462694 hasRelatedWork W3018959556 @default.
- W2891462694 hasRelatedWork W3174196512 @default.
- W2891462694 hasRelatedWork W3211546796 @default.
- W2891462694 hasRelatedWork W4281560664 @default.
- W2891462694 hasRelatedWork W4281616679 @default.
- W2891462694 hasRelatedWork W4293525103 @default.
- W2891462694 hasRelatedWork W4308191010 @default.
- W2891462694 hasRelatedWork W4318350883 @default.
- W2891462694 hasRelatedWork W4323021782 @default.
- W2891462694 hasVolume "13" @default.
- W2891462694 isParatext "false" @default.
- W2891462694 isRetracted "false" @default.
- W2891462694 magId "2891462694" @default.
- W2891462694 workType "article" @default.