Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891464239> ?p ?o ?g. }
- W2891464239 endingPage "143" @default.
- W2891464239 startingPage "122" @default.
- W2891464239 abstract "Activity pattern classification is extensively studied using multi-person single-day mobile traces. However, human mobility exhibits intra-personal variability and thus single-day activity may not fully capture one’s activity patterns. This paper creates a methodological framework to analyze similarity of activity patterns using frequent sequential pattern mining when multi-person multi-day data is available. Frequent sequential pattern mining discovers the frequently occurring ordered subsequences and is a natural approach of analyzing multi-day travel patterns. Prefix-Span algorithm is implemented to extract frequent patterns for each individual. Then similarity measures are defined to describe the extent to which two travelers’ activity patterns are alike and the regularity of how one repeats her activity patterns from day to day. Based upon the pairwise similarity values between two individuals, hierarchical clustering is conducted to divide travelers into communities. To illustrate these methodologies, 349 travelers’ 19,130 travel activity sequences are extracted from the world’s first connected vehicle testbed in Ann Arbor, Michigan. Three major clusters are identified. Coupled with demographics, these clusters are characterized as “seniors”, “working class”, and “parents”, respectively. Multinomial logistic regression is employed to model to what extent the similarity of socio-demographics can explain that of travel patterns. This work can be extended to either infer an unknown user’s demographics (or customer profiling) based on her activity patterns, or to reconstruct an unknown user’s frequent activity patterns based on her demographics and other similar travelers’ patterns." @default.
- W2891464239 created "2018-09-27" @default.
- W2891464239 creator A5031176876 @default.
- W2891464239 creator A5049787333 @default.
- W2891464239 date "2018-11-01" @default.
- W2891464239 modified "2023-10-04" @default.
- W2891464239 title "Similarity analysis of frequent sequential activity pattern mining" @default.
- W2891464239 cites W1612283261 @default.
- W2891464239 cites W1651166699 @default.
- W2891464239 cites W1968797933 @default.
- W2891464239 cites W1971536003 @default.
- W2891464239 cites W1982300822 @default.
- W2891464239 cites W1983608437 @default.
- W2891464239 cites W1985101747 @default.
- W2891464239 cites W1987228002 @default.
- W2891464239 cites W1992223263 @default.
- W2891464239 cites W1995103535 @default.
- W2891464239 cites W1995151908 @default.
- W2891464239 cites W2024877464 @default.
- W2891464239 cites W2032069223 @default.
- W2891464239 cites W2035890032 @default.
- W2891464239 cites W2041371899 @default.
- W2891464239 cites W2042493333 @default.
- W2891464239 cites W2044985623 @default.
- W2891464239 cites W2048021967 @default.
- W2891464239 cites W2058105398 @default.
- W2891464239 cites W2059759344 @default.
- W2891464239 cites W2064980505 @default.
- W2891464239 cites W2068259873 @default.
- W2891464239 cites W2069869658 @default.
- W2891464239 cites W2071610484 @default.
- W2891464239 cites W2110893883 @default.
- W2891464239 cites W2114092915 @default.
- W2891464239 cites W2123766130 @default.
- W2891464239 cites W2132303512 @default.
- W2891464239 cites W2141807666 @default.
- W2891464239 cites W2176767066 @default.
- W2891464239 cites W2255825392 @default.
- W2891464239 cites W2345172924 @default.
- W2891464239 cites W2368261723 @default.
- W2891464239 cites W2405696541 @default.
- W2891464239 cites W2616570228 @default.
- W2891464239 cites W2753027776 @default.
- W2891464239 cites W2782547620 @default.
- W2891464239 cites W2788798981 @default.
- W2891464239 cites W2963214893 @default.
- W2891464239 cites W325970 @default.
- W2891464239 cites W4232981748 @default.
- W2891464239 doi "https://doi.org/10.1016/j.trc.2018.09.018" @default.
- W2891464239 hasPublicationYear "2018" @default.
- W2891464239 type Work @default.
- W2891464239 sameAs 2891464239 @default.
- W2891464239 citedByCount "26" @default.
- W2891464239 countsByYear W28914642392019 @default.
- W2891464239 countsByYear W28914642392020 @default.
- W2891464239 countsByYear W28914642392021 @default.
- W2891464239 countsByYear W28914642392022 @default.
- W2891464239 countsByYear W28914642392023 @default.
- W2891464239 crossrefType "journal-article" @default.
- W2891464239 hasAuthorship W2891464239A5031176876 @default.
- W2891464239 hasAuthorship W2891464239A5049787333 @default.
- W2891464239 hasConcept C103278499 @default.
- W2891464239 hasConcept C111919701 @default.
- W2891464239 hasConcept C115961682 @default.
- W2891464239 hasConcept C117568660 @default.
- W2891464239 hasConcept C119857082 @default.
- W2891464239 hasConcept C124101348 @default.
- W2891464239 hasConcept C144024400 @default.
- W2891464239 hasConcept C149923435 @default.
- W2891464239 hasConcept C154945302 @default.
- W2891464239 hasConcept C184898388 @default.
- W2891464239 hasConcept C187191949 @default.
- W2891464239 hasConcept C205649164 @default.
- W2891464239 hasConcept C2780084366 @default.
- W2891464239 hasConcept C41008148 @default.
- W2891464239 hasConcept C73555534 @default.
- W2891464239 hasConcept C92835128 @default.
- W2891464239 hasConceptScore W2891464239C103278499 @default.
- W2891464239 hasConceptScore W2891464239C111919701 @default.
- W2891464239 hasConceptScore W2891464239C115961682 @default.
- W2891464239 hasConceptScore W2891464239C117568660 @default.
- W2891464239 hasConceptScore W2891464239C119857082 @default.
- W2891464239 hasConceptScore W2891464239C124101348 @default.
- W2891464239 hasConceptScore W2891464239C144024400 @default.
- W2891464239 hasConceptScore W2891464239C149923435 @default.
- W2891464239 hasConceptScore W2891464239C154945302 @default.
- W2891464239 hasConceptScore W2891464239C184898388 @default.
- W2891464239 hasConceptScore W2891464239C187191949 @default.
- W2891464239 hasConceptScore W2891464239C205649164 @default.
- W2891464239 hasConceptScore W2891464239C2780084366 @default.
- W2891464239 hasConceptScore W2891464239C41008148 @default.
- W2891464239 hasConceptScore W2891464239C73555534 @default.
- W2891464239 hasConceptScore W2891464239C92835128 @default.
- W2891464239 hasLocation W28914642391 @default.
- W2891464239 hasOpenAccess W2891464239 @default.
- W2891464239 hasPrimaryLocation W28914642391 @default.
- W2891464239 hasRelatedWork W1763500013 @default.
- W2891464239 hasRelatedWork W1989859714 @default.