Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891467512> ?p ?o ?g. }
- W2891467512 abstract "Increases in physical activity through active travel have the potential to have large beneficial effects on populations, through both better health outcomes and reduced motorized traffic. However accurately identifying travel mode in large datasets is problematic. Here we provide an open source tool to quantify time spent stationary and in four travel modes(walking, cycling, train, motorised vehicle) from accelerometer measured physical activity data, combined with GPS and GIS data. The Examining Neighbourhood Activities in Built Living Environments in London study evaluates the effect of the built environment on health behaviours, including physical activity. Participants wore accelerometers and GPS receivers on the hip for 7 days. We time-matched accelerometer and GPS, and then extracted data from the commutes of 326 adult participants, using stated commute times and modes, which were manually checked to confirm stated travel mode. This yielded examples of five travel modes: walking, cycling, motorised vehicle, train and stationary. We used this example data to train a gradient boosted tree, a form of supervised machine learning algorithm, on each data point (131,537 points), rather than on journeys. Accuracy during training was assessed using five-fold cross-validation. We also manually identified the travel behaviour of both 21 participants from ENABLE London (402,749 points), and 10 participants from a separate study (STAMP-2, 210,936 points), who were not included in the training data. We compared our predictions against this manual identification to further test accuracy and test generalisability. Applying the algorithm, we correctly identified travel mode 97.3% of the time in cross-validation (mean sensitivity 96.3%, mean active travel sensitivity 94.6%). We showed 96.0% agreement between manual identification and prediction of 21 individuals’ travel modes (mean sensitivity 92.3%, mean active travel sensitivity 84.9%) and 96.5% agreement between the STAMP-2 study and predictions (mean sensitivity 85.5%, mean active travel sensitivity 78.9%). We present a generalizable tool that identifies time spent stationary and time spent walking with very high precision, time spent in trains or vehicles with good precision, and time spent cycling with moderate precisionIn studies where both accelerometer and GPS data are available this tool complements analyses of physical activity, showing whether differences in PA may be explained by differences in travel mode. All code necessary to replicate, fit and predict to other datasets is provided to facilitate use by other researchers." @default.
- W2891467512 created "2018-09-27" @default.
- W2891467512 creator A5020523741 @default.
- W2891467512 creator A5038311236 @default.
- W2891467512 creator A5042801829 @default.
- W2891467512 creator A5045222226 @default.
- W2891467512 creator A5050576003 @default.
- W2891467512 creator A5051233142 @default.
- W2891467512 creator A5054549316 @default.
- W2891467512 creator A5060975974 @default.
- W2891467512 creator A5063541389 @default.
- W2891467512 creator A5068195667 @default.
- W2891467512 creator A5077337083 @default.
- W2891467512 creator A5080615785 @default.
- W2891467512 creator A5080816287 @default.
- W2891467512 creator A5083092972 @default.
- W2891467512 date "2018-09-21" @default.
- W2891467512 modified "2023-10-16" @default.
- W2891467512 title "An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data" @default.
- W2891467512 cites W1818937361 @default.
- W2891467512 cites W182089001 @default.
- W2891467512 cites W1988071448 @default.
- W2891467512 cites W2011781303 @default.
- W2891467512 cites W2012695428 @default.
- W2891467512 cites W2015716013 @default.
- W2891467512 cites W2066400903 @default.
- W2891467512 cites W2070493638 @default.
- W2891467512 cites W2086323853 @default.
- W2891467512 cites W2096528587 @default.
- W2891467512 cites W2105709822 @default.
- W2891467512 cites W2108707936 @default.
- W2891467512 cites W2109784184 @default.
- W2891467512 cites W2117720398 @default.
- W2891467512 cites W2134430874 @default.
- W2891467512 cites W2140073493 @default.
- W2891467512 cites W2141170928 @default.
- W2891467512 cites W2161241389 @default.
- W2891467512 cites W2164365672 @default.
- W2891467512 cites W2255845836 @default.
- W2891467512 cites W2290448126 @default.
- W2891467512 cites W2522454246 @default.
- W2891467512 cites W2541018908 @default.
- W2891467512 cites W2597360030 @default.
- W2891467512 cites W2911964244 @default.
- W2891467512 cites W3102476541 @default.
- W2891467512 cites W3104887532 @default.
- W2891467512 doi "https://doi.org/10.1186/s12966-018-0724-y" @default.
- W2891467512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6150970" @default.
- W2891467512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30241483" @default.
- W2891467512 hasPublicationYear "2018" @default.
- W2891467512 type Work @default.
- W2891467512 sameAs 2891467512 @default.
- W2891467512 citedByCount "16" @default.
- W2891467512 countsByYear W28914675122019 @default.
- W2891467512 countsByYear W28914675122020 @default.
- W2891467512 countsByYear W28914675122021 @default.
- W2891467512 countsByYear W28914675122022 @default.
- W2891467512 countsByYear W28914675122023 @default.
- W2891467512 crossrefType "journal-article" @default.
- W2891467512 hasAuthorship W2891467512A5020523741 @default.
- W2891467512 hasAuthorship W2891467512A5038311236 @default.
- W2891467512 hasAuthorship W2891467512A5042801829 @default.
- W2891467512 hasAuthorship W2891467512A5045222226 @default.
- W2891467512 hasAuthorship W2891467512A5050576003 @default.
- W2891467512 hasAuthorship W2891467512A5051233142 @default.
- W2891467512 hasAuthorship W2891467512A5054549316 @default.
- W2891467512 hasAuthorship W2891467512A5060975974 @default.
- W2891467512 hasAuthorship W2891467512A5063541389 @default.
- W2891467512 hasAuthorship W2891467512A5068195667 @default.
- W2891467512 hasAuthorship W2891467512A5077337083 @default.
- W2891467512 hasAuthorship W2891467512A5080615785 @default.
- W2891467512 hasAuthorship W2891467512A5080816287 @default.
- W2891467512 hasAuthorship W2891467512A5083092972 @default.
- W2891467512 hasBestOaLocation W28914675121 @default.
- W2891467512 hasConcept C111919701 @default.
- W2891467512 hasConcept C127413603 @default.
- W2891467512 hasConcept C144072006 @default.
- W2891467512 hasConcept C22212356 @default.
- W2891467512 hasConcept C2778384698 @default.
- W2891467512 hasConcept C41008148 @default.
- W2891467512 hasConcept C44154836 @default.
- W2891467512 hasConcept C60229501 @default.
- W2891467512 hasConcept C76155785 @default.
- W2891467512 hasConcept C89805583 @default.
- W2891467512 hasConceptScore W2891467512C111919701 @default.
- W2891467512 hasConceptScore W2891467512C127413603 @default.
- W2891467512 hasConceptScore W2891467512C144072006 @default.
- W2891467512 hasConceptScore W2891467512C22212356 @default.
- W2891467512 hasConceptScore W2891467512C2778384698 @default.
- W2891467512 hasConceptScore W2891467512C41008148 @default.
- W2891467512 hasConceptScore W2891467512C44154836 @default.
- W2891467512 hasConceptScore W2891467512C60229501 @default.
- W2891467512 hasConceptScore W2891467512C76155785 @default.
- W2891467512 hasConceptScore W2891467512C89805583 @default.
- W2891467512 hasFunder F4320313269 @default.
- W2891467512 hasFunder F4320319990 @default.
- W2891467512 hasFunder F4320334626 @default.
- W2891467512 hasFunder F4320334705 @default.
- W2891467512 hasIssue "1" @default.
- W2891467512 hasLocation W28914675121 @default.