Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891480402> ?p ?o ?g. }
- W2891480402 endingPage "279" @default.
- W2891480402 startingPage "265" @default.
- W2891480402 abstract "This article will introduce a new bypass-transition model based on the Klebanoff-mode dynamics. The model is built on the Laminar Kinetic Energy (LKE) concept, in order to be used in a Reynolds-Averaged Navier–Stokes (RANS) formulation. A new formulation of the LKE will be presented—it is based on a transport equation which quantifies the Klebanoff-mode amplification and destabilisation. This equation is included in a k−ω turbulence model –as Walters & Cokljat (2008) suggested –and is to result in a three-equation kL−kT−ω formulation. This new model was designed according to bypass-transition descriptions available in the literature. These descriptions are based on experimental results, Direct Numerical Simulation (DNS) results and stability computations. The bypass-transition phenomenon will first be overviewed and the mechanisms of the growth and the destabilisation of the Klebanoff modes will be examined. Starting from this literature review, a new model will then be described and validated on academic configurations." @default.
- W2891480402 created "2018-09-27" @default.
- W2891480402 creator A5015886970 @default.
- W2891480402 creator A5027729803 @default.
- W2891480402 creator A5035635362 @default.
- W2891480402 creator A5069605567 @default.
- W2891480402 creator A5080692553 @default.
- W2891480402 date "2019-03-01" @default.
- W2891480402 modified "2023-09-24" @default.
- W2891480402 title "A laminar kinetic energy model based on the Klebanoff-mode dynamics to predict bypass transition" @default.
- W2891480402 cites W1972625780 @default.
- W2891480402 cites W1986154199 @default.
- W2891480402 cites W1995127929 @default.
- W2891480402 cites W2004355729 @default.
- W2891480402 cites W2005167168 @default.
- W2891480402 cites W2006370149 @default.
- W2891480402 cites W2024345841 @default.
- W2891480402 cites W2032777079 @default.
- W2891480402 cites W2034661879 @default.
- W2891480402 cites W2034959718 @default.
- W2891480402 cites W2068923858 @default.
- W2891480402 cites W2071049996 @default.
- W2891480402 cites W2080729318 @default.
- W2891480402 cites W2090262284 @default.
- W2891480402 cites W2094337659 @default.
- W2891480402 cites W2103187674 @default.
- W2891480402 cites W2123092587 @default.
- W2891480402 cites W2123532463 @default.
- W2891480402 cites W2129888440 @default.
- W2891480402 cites W2133379988 @default.
- W2891480402 cites W2133606936 @default.
- W2891480402 cites W2140803647 @default.
- W2891480402 cites W2144603599 @default.
- W2891480402 cites W2150805640 @default.
- W2891480402 cites W2151450119 @default.
- W2891480402 cites W2151460089 @default.
- W2891480402 cites W2158216297 @default.
- W2891480402 cites W2170310443 @default.
- W2891480402 cites W2321935821 @default.
- W2891480402 cites W2549157308 @default.
- W2891480402 cites W2614616825 @default.
- W2891480402 cites W2621232727 @default.
- W2891480402 doi "https://doi.org/10.1016/j.euromechflu.2018.08.016" @default.
- W2891480402 hasPublicationYear "2019" @default.
- W2891480402 type Work @default.
- W2891480402 sameAs 2891480402 @default.
- W2891480402 citedByCount "4" @default.
- W2891480402 countsByYear W28914804022019 @default.
- W2891480402 countsByYear W28914804022020 @default.
- W2891480402 countsByYear W28914804022021 @default.
- W2891480402 countsByYear W28914804022022 @default.
- W2891480402 crossrefType "journal-article" @default.
- W2891480402 hasAuthorship W2891480402A5015886970 @default.
- W2891480402 hasAuthorship W2891480402A5027729803 @default.
- W2891480402 hasAuthorship W2891480402A5035635362 @default.
- W2891480402 hasAuthorship W2891480402A5069605567 @default.
- W2891480402 hasAuthorship W2891480402A5080692553 @default.
- W2891480402 hasBestOaLocation W28914804022 @default.
- W2891480402 hasConcept C111919701 @default.
- W2891480402 hasConcept C112972136 @default.
- W2891480402 hasConcept C11413529 @default.
- W2891480402 hasConcept C119857082 @default.
- W2891480402 hasConcept C121332964 @default.
- W2891480402 hasConcept C121864883 @default.
- W2891480402 hasConcept C135889238 @default.
- W2891480402 hasConcept C15476950 @default.
- W2891480402 hasConcept C15744967 @default.
- W2891480402 hasConcept C1633027 @default.
- W2891480402 hasConcept C182748727 @default.
- W2891480402 hasConcept C196558001 @default.
- W2891480402 hasConcept C2775884256 @default.
- W2891480402 hasConcept C28826006 @default.
- W2891480402 hasConcept C32526432 @default.
- W2891480402 hasConcept C33923547 @default.
- W2891480402 hasConcept C38349280 @default.
- W2891480402 hasConcept C41008148 @default.
- W2891480402 hasConcept C45374587 @default.
- W2891480402 hasConcept C48677424 @default.
- W2891480402 hasConcept C57879066 @default.
- W2891480402 hasConcept C74650414 @default.
- W2891480402 hasConcept C76563973 @default.
- W2891480402 hasConcept C77805123 @default.
- W2891480402 hasConcept C97355855 @default.
- W2891480402 hasConceptScore W2891480402C111919701 @default.
- W2891480402 hasConceptScore W2891480402C112972136 @default.
- W2891480402 hasConceptScore W2891480402C11413529 @default.
- W2891480402 hasConceptScore W2891480402C119857082 @default.
- W2891480402 hasConceptScore W2891480402C121332964 @default.
- W2891480402 hasConceptScore W2891480402C121864883 @default.
- W2891480402 hasConceptScore W2891480402C135889238 @default.
- W2891480402 hasConceptScore W2891480402C15476950 @default.
- W2891480402 hasConceptScore W2891480402C15744967 @default.
- W2891480402 hasConceptScore W2891480402C1633027 @default.
- W2891480402 hasConceptScore W2891480402C182748727 @default.
- W2891480402 hasConceptScore W2891480402C196558001 @default.
- W2891480402 hasConceptScore W2891480402C2775884256 @default.
- W2891480402 hasConceptScore W2891480402C28826006 @default.
- W2891480402 hasConceptScore W2891480402C32526432 @default.