Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891483337> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2891483337 endingPage "154" @default.
- W2891483337 startingPage "148" @default.
- W2891483337 abstract "Individuals who have lost their voice following a laryngectomy as a treatment for cancer will inevitably struggle with their daily communication. Unfortunately, the current methods for speaking after laryngectomy all have limitations, either because of the poor acoustics generated by these methods or because they are potentially harmful. The aim of this work is thus to explore an alternative method for post-laryngectomy voice restoration in which the movement of the intact articulators is captured and then converted into audible speech using machine learning techniques. To demonstrate the feasibility of speech generation from captured articulator movement, 6 healthy adults were recruited. For each subject, both the speech acoustics and the subject's articulator movements were recorded simultaneously. Articulator movements were captured using a technique known as permanent magnet articulography (PMA), in which small magnets are attached to the articulators (typically tongue and lips) and the magnetic field generated by the magnets is captured with sensors located close to the mouth. Deep artificial neural networks were then used to model the mapping between the sensor data and the speech acoustics, thus, enabling the synthesis of speech from captured articulatory data. The proposed silent speech system is able to generate speech that sounds natural, resembles the subject's own voice and is fairly intelligible (up to 92% intelligibility for some speakers on a phonetically-rich corpus). With further research, the proposed system could in future be a real option to restore lost voice after laryngectomy. Aquellas personas que han perdido su voz después de una laringectomía se ven limitadas irremediablemente en su comunicación diaria. A pesar de existir en la actualidad métodos para recuperar el habla tras la laringectomía, todos ellos presentan limitaciones. El objetivo de este trabajo es explorar un método alternativo para hablar tras la laringectomía, en el que el movimiento de los órganos de la voz se transforma en una señal acústica utilizando técnicas de aprendizaje automático. En esta investigación participaron 6 adultos sanos. Para cada sujeto se grabó tanto su voz como los movimientos de sus labios y lengua. Los movimientos de los órganos del habla fueron capturados usando una técnica conocida como Articulografía de Imán Permanente (PMA), en la cual pequeños imanes se colocan sobre estos órganos y el campo magnético generado por los imanes se captura usando unos sensores sensibles al campo magnético. Se utilizaron redes neuronales artificiales profundas para modelar la transformación entre los datos de los sensores y la acústica de la voz. El sistema de habla silenciosa propuesto es capaz de generar voz que suena natural, se asemeja a la propia voz del sujeto y es inteligible (hasta un 92% de inteligibilidad para algunos sujetos). El sistema propuesto podría ser en el futuro una opción viable para restaurar la voz tras una laringectomía total." @default.
- W2891483337 created "2018-09-27" @default.
- W2891483337 creator A5010560619 @default.
- W2891483337 creator A5059120438 @default.
- W2891483337 date "2018-10-01" @default.
- W2891483337 modified "2023-10-01" @default.
- W2891483337 title "A real-time silent speech system for voice restoration after total laryngectomy" @default.
- W2891483337 cites W104532933 @default.
- W2891483337 cites W1981989535 @default.
- W2891483337 cites W2008120082 @default.
- W2891483337 cites W2013317861 @default.
- W2891483337 cites W2022270663 @default.
- W2891483337 cites W2023249208 @default.
- W2891483337 cites W2025700375 @default.
- W2891483337 cites W2033696801 @default.
- W2891483337 cites W2039640471 @default.
- W2891483337 cites W2049686551 @default.
- W2891483337 cites W2057959448 @default.
- W2891483337 cites W2059169992 @default.
- W2891483337 cites W2145247970 @default.
- W2891483337 cites W2147643143 @default.
- W2891483337 cites W2322064186 @default.
- W2891483337 cites W2344834815 @default.
- W2891483337 cites W2390079813 @default.
- W2891483337 cites W2745751587 @default.
- W2891483337 cites W2770785043 @default.
- W2891483337 cites W2919115771 @default.
- W2891483337 doi "https://doi.org/10.1016/j.rlfa.2018.07.004" @default.
- W2891483337 hasPublicationYear "2018" @default.
- W2891483337 type Work @default.
- W2891483337 sameAs 2891483337 @default.
- W2891483337 citedByCount "4" @default.
- W2891483337 countsByYear W28914833372020 @default.
- W2891483337 countsByYear W28914833372021 @default.
- W2891483337 countsByYear W28914833372022 @default.
- W2891483337 countsByYear W28914833372023 @default.
- W2891483337 crossrefType "journal-article" @default.
- W2891483337 hasAuthorship W2891483337A5010560619 @default.
- W2891483337 hasAuthorship W2891483337A5059120438 @default.
- W2891483337 hasConcept C111472728 @default.
- W2891483337 hasConcept C121332964 @default.
- W2891483337 hasConcept C138885662 @default.
- W2891483337 hasConcept C141071460 @default.
- W2891483337 hasConcept C24890656 @default.
- W2891483337 hasConcept C2778415344 @default.
- W2891483337 hasConcept C2780474809 @default.
- W2891483337 hasConcept C2781157581 @default.
- W2891483337 hasConcept C28490314 @default.
- W2891483337 hasConcept C29694066 @default.
- W2891483337 hasConcept C41008148 @default.
- W2891483337 hasConcept C548259974 @default.
- W2891483337 hasConcept C60048801 @default.
- W2891483337 hasConcept C71924100 @default.
- W2891483337 hasConceptScore W2891483337C111472728 @default.
- W2891483337 hasConceptScore W2891483337C121332964 @default.
- W2891483337 hasConceptScore W2891483337C138885662 @default.
- W2891483337 hasConceptScore W2891483337C141071460 @default.
- W2891483337 hasConceptScore W2891483337C24890656 @default.
- W2891483337 hasConceptScore W2891483337C2778415344 @default.
- W2891483337 hasConceptScore W2891483337C2780474809 @default.
- W2891483337 hasConceptScore W2891483337C2781157581 @default.
- W2891483337 hasConceptScore W2891483337C28490314 @default.
- W2891483337 hasConceptScore W2891483337C29694066 @default.
- W2891483337 hasConceptScore W2891483337C41008148 @default.
- W2891483337 hasConceptScore W2891483337C548259974 @default.
- W2891483337 hasConceptScore W2891483337C60048801 @default.
- W2891483337 hasConceptScore W2891483337C71924100 @default.
- W2891483337 hasFunder F4320309969 @default.
- W2891483337 hasIssue "4" @default.
- W2891483337 hasLocation W28914833371 @default.
- W2891483337 hasOpenAccess W2891483337 @default.
- W2891483337 hasPrimaryLocation W28914833371 @default.
- W2891483337 hasRelatedWork W1550563715 @default.
- W2891483337 hasRelatedWork W1974487811 @default.
- W2891483337 hasRelatedWork W1998186035 @default.
- W2891483337 hasRelatedWork W2078750377 @default.
- W2891483337 hasRelatedWork W2122512935 @default.
- W2891483337 hasRelatedWork W2149469880 @default.
- W2891483337 hasRelatedWork W2471783128 @default.
- W2891483337 hasRelatedWork W2914885816 @default.
- W2891483337 hasRelatedWork W2964135014 @default.
- W2891483337 hasRelatedWork W2611434774 @default.
- W2891483337 hasVolume "38" @default.
- W2891483337 isParatext "false" @default.
- W2891483337 isRetracted "false" @default.
- W2891483337 magId "2891483337" @default.
- W2891483337 workType "article" @default.