Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891489219> ?p ?o ?g. }
- W2891489219 endingPage "894" @default.
- W2891489219 startingPage "885" @default.
- W2891489219 abstract "We have recently moved from viewing species, individuals, and their DNA as fundamental units of biological organization, to recognizing that the microbiome contributes to the macroorganism’s genome and hence its phenotype; this collective of organisms is termed the holobiont. There are complex bidirectional interactions, mediated by chemical signals, between hosts and their microbiota. Olfactory communication influences animal behavior, odors might be produced or altered by bacteria, and bacteria themselves might also affect the brain and behavior of their hosts. We develop a novel framework to understand these relationships for microbially mediated olfactory communication. We explore the potential host–microbe interaction space, reveal insights from signal–receiver theory, and develop a new process model for how microbes might produce or contribute to host olfactory cues and signals. Microbes are now known to influence inter- and intraspecific olfactory signaling systems. They do so by producing metabolites that function as odorants. A unique attribute of such odorants is that they arise as a product of microbial–host interactions. These interactions need not be mutualistic, and indeed can be antagonistic. We develop an integrated ecoevolutionary model to explore microbially mediated olfactory communication and a process model that illustrates the various ways that microbial products might contribute to odorants. This novel approach generates testable predictions, including that selection to incorporate microbial products should be a common feature of infochemicals that communicate identity but not those that communicate fitness or quality. Microbes extend an individual’s genotype, but also enhance vulnerability to environmental change. Microbes are now known to influence inter- and intraspecific olfactory signaling systems. They do so by producing metabolites that function as odorants. A unique attribute of such odorants is that they arise as a product of microbial–host interactions. These interactions need not be mutualistic, and indeed can be antagonistic. We develop an integrated ecoevolutionary model to explore microbially mediated olfactory communication and a process model that illustrates the various ways that microbial products might contribute to odorants. This novel approach generates testable predictions, including that selection to incorporate microbial products should be a common feature of infochemicals that communicate identity but not those that communicate fitness or quality. Microbes extend an individual’s genotype, but also enhance vulnerability to environmental change. all of the chemicals emitted by an organism (or a substance that an organism emits; e.g., urine, scent-marking material) that can potentially act as semiochemicals (i.e., cues or signals). Sources of chemicals in the profile include the individual organism’s metabolic products, the environment, and chemicals created by other organisms, including those transferred from conspecifics and chemicals produced by microbes. receptors for chemical compounds that can be expressed on many different surfaces of the body [1Bienenstock J. et al.Disruptive physiology: olfaction and the microbiome–gut–brain axis.Biol. Rev. 2018; 93: 390-403Crossref PubMed Scopus (23) Google Scholar]; includes both olfactory and gustatory receptors. Most chemical cues and signals are detected by olfaction rather than gustation [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]. a semiochemical (or mix of semiochemicals) that conveys information to another organism but did not evolve for that function [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]. the combination of a host and its microbial symbionts, including transient and permanent members. the combined genomes of the host and its microbial symbionts. see ‘Semiochemical’. the sum total of the genes encoded by the microbiota. those species of microorganisms living on or in a host organism. the smell or scent interpreted by the brain once odorants have been detected and communicated to the brain via olfactory receptors and neurons. an odor molecule, which can be of almost any size [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]; can bind to multiple different olfactory receptors, triggering an electrical signal in the brain. In mammals, the perception of a particular odorant comes from the stimulation of a cluster of olfactory receptors on different neurons signaling to the brain in a combinatorial manner (summarized in [1Bienenstock J. et al.Disruptive physiology: olfaction and the microbiome–gut–brain axis.Biol. Rev. 2018; 93: 390-403Crossref PubMed Scopus (23) Google Scholar]). the process through which odorants bind to olfactory receptors and are converted into electrical signals in the brain [1Bienenstock J. et al.Disruptive physiology: olfaction and the microbiome–gut–brain axis.Biol. Rev. 2018; 93: 390-403Crossref PubMed Scopus (23) Google Scholar, 2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]. receptor protein expressed by sensory neurons in the brain, to detect odor chemicals (odorants) [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]; concentrated in the olfactory epithelium at the back of the nasal cavity but can also be found throughout the body, including internally in the gut and kidneys [1Bienenstock J. et al.Disruptive physiology: olfaction and the microbiome–gut–brain axis.Biol. Rev. 2018; 93: 390-403Crossref PubMed Scopus (23) Google Scholar]. an organism that can receive a signal from a particular signaler and/or detect and respond to a cue. also called an infochemical; a chemical involved in an interaction between organisms. Cues and signals are types of semiochemical [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]. Evolves from a cue to alter the behavior of another organism. Signals work because receivers evolve detection structures and responses (summarized in [2Wyatt T.D. Pheromones and Animal Behavior: Chemical Signals and Signatures. Cambridge University Press, 2014Google Scholar]). a mix of odorants that an animal learns to associate with an experience. These might not be the same odorants each time; they are specific to each event of associative learning. For example, a prey animal might learn to associate a signature mix with predation risk or an individual might associate a signature mix with a non-kin conspecific group." @default.
- W2891489219 created "2018-09-27" @default.
- W2891489219 creator A5010906300 @default.
- W2891489219 creator A5055770757 @default.
- W2891489219 creator A5062294094 @default.
- W2891489219 date "2018-11-01" @default.
- W2891489219 modified "2023-09-27" @default.
- W2891489219 title "The Extended Genotype: Microbially Mediated Olfactory Communication" @default.
- W2891489219 cites W1715339469 @default.
- W2891489219 cites W1901126853 @default.
- W2891489219 cites W1920335786 @default.
- W2891489219 cites W1932345506 @default.
- W2891489219 cites W1951069276 @default.
- W2891489219 cites W1976985771 @default.
- W2891489219 cites W1981231088 @default.
- W2891489219 cites W1981500982 @default.
- W2891489219 cites W1988691705 @default.
- W2891489219 cites W1989889539 @default.
- W2891489219 cites W1991154367 @default.
- W2891489219 cites W1992047176 @default.
- W2891489219 cites W1995500320 @default.
- W2891489219 cites W2001339909 @default.
- W2891489219 cites W2014518833 @default.
- W2891489219 cites W2020398205 @default.
- W2891489219 cites W2030500910 @default.
- W2891489219 cites W2033829415 @default.
- W2891489219 cites W2040693077 @default.
- W2891489219 cites W2043709775 @default.
- W2891489219 cites W2045132882 @default.
- W2891489219 cites W2054032180 @default.
- W2891489219 cites W2058956238 @default.
- W2891489219 cites W2059872986 @default.
- W2891489219 cites W2077826753 @default.
- W2891489219 cites W2079347110 @default.
- W2891489219 cites W2082418784 @default.
- W2891489219 cites W2083719093 @default.
- W2891489219 cites W2084071695 @default.
- W2891489219 cites W2089145728 @default.
- W2891489219 cites W2089783968 @default.
- W2891489219 cites W2095261004 @default.
- W2891489219 cites W2097124003 @default.
- W2891489219 cites W2114455599 @default.
- W2891489219 cites W2117120161 @default.
- W2891489219 cites W2117753850 @default.
- W2891489219 cites W2136337094 @default.
- W2891489219 cites W2139697588 @default.
- W2891489219 cites W2139884694 @default.
- W2891489219 cites W2143028868 @default.
- W2891489219 cites W2147637673 @default.
- W2891489219 cites W2150003410 @default.
- W2891489219 cites W2154044519 @default.
- W2891489219 cites W2171517785 @default.
- W2891489219 cites W2206674269 @default.
- W2891489219 cites W2295923470 @default.
- W2891489219 cites W2315426300 @default.
- W2891489219 cites W2469986620 @default.
- W2891489219 cites W2537252495 @default.
- W2891489219 cites W2553365624 @default.
- W2891489219 cites W2570578408 @default.
- W2891489219 cites W2582492205 @default.
- W2891489219 cites W2591030128 @default.
- W2891489219 cites W2608401495 @default.
- W2891489219 cites W2626416995 @default.
- W2891489219 cites W2727677510 @default.
- W2891489219 cites W2747551558 @default.
- W2891489219 cites W2771553132 @default.
- W2891489219 cites W2806494097 @default.
- W2891489219 cites W2949512018 @default.
- W2891489219 cites W2952564192 @default.
- W2891489219 doi "https://doi.org/10.1016/j.tree.2018.08.010" @default.
- W2891489219 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30224089" @default.
- W2891489219 hasPublicationYear "2018" @default.
- W2891489219 type Work @default.
- W2891489219 sameAs 2891489219 @default.
- W2891489219 citedByCount "48" @default.
- W2891489219 countsByYear W28914892192018 @default.
- W2891489219 countsByYear W28914892192019 @default.
- W2891489219 countsByYear W28914892192020 @default.
- W2891489219 countsByYear W28914892192021 @default.
- W2891489219 countsByYear W28914892192022 @default.
- W2891489219 countsByYear W28914892192023 @default.
- W2891489219 crossrefType "journal-article" @default.
- W2891489219 hasAuthorship W2891489219A5010906300 @default.
- W2891489219 hasAuthorship W2891489219A5055770757 @default.
- W2891489219 hasAuthorship W2891489219A5062294094 @default.
- W2891489219 hasConcept C14036430 @default.
- W2891489219 hasConcept C143121216 @default.
- W2891489219 hasConcept C15744967 @default.
- W2891489219 hasConcept C18903297 @default.
- W2891489219 hasConcept C2777289909 @default.
- W2891489219 hasConcept C43144210 @default.
- W2891489219 hasConcept C46312422 @default.
- W2891489219 hasConcept C523546767 @default.
- W2891489219 hasConcept C54355233 @default.
- W2891489219 hasConcept C70721500 @default.
- W2891489219 hasConcept C78458016 @default.
- W2891489219 hasConcept C86803240 @default.
- W2891489219 hasConceptScore W2891489219C14036430 @default.