Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891489434> ?p ?o ?g. }
- W2891489434 endingPage "11" @default.
- W2891489434 startingPage "1" @default.
- W2891489434 abstract "Traditional laboratory experiments, rehabilitation clinics, and wearable sensors offer biomechanists a wealth of data on healthy and pathological movement. To harness the power of these data and make research more efficient, modern machine learning techniques are starting to complement traditional statistical tools. This survey summarizes the current usage of machine learning methods in human movement biomechanics and highlights best practices that will enable critical evaluation of the literature. We carried out a PubMed/Medline database search for original research articles that used machine learning to study movement biomechanics in patients with musculoskeletal and neuromuscular diseases. Most studies that met our inclusion criteria focused on classifying pathological movement, predicting risk of developing a disease, estimating the effect of an intervention, or automatically recognizing activities to facilitate out-of-clinic patient monitoring. We found that research studies build and evaluate models inconsistently, which motivated our discussion of best practices. We provide recommendations for training and evaluating machine learning models and discuss the potential of several underutilized approaches, such as deep learning, to generate new knowledge about human movement. We believe that cross-training biomechanists in data science and a cultural shift toward sharing of data and tools are essential to maximize the impact of biomechanics research." @default.
- W2891489434 created "2018-09-27" @default.
- W2891489434 creator A5044061507 @default.
- W2891489434 creator A5045744709 @default.
- W2891489434 creator A5060500557 @default.
- W2891489434 creator A5063364372 @default.
- W2891489434 creator A5064748489 @default.
- W2891489434 creator A5067272320 @default.
- W2891489434 date "2018-11-01" @default.
- W2891489434 modified "2023-10-17" @default.
- W2891489434 title "Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities" @default.
- W2891489434 cites W1514650226 @default.
- W2891489434 cites W1560113346 @default.
- W2891489434 cites W1580120749 @default.
- W2891489434 cites W1965211312 @default.
- W2891489434 cites W1967691726 @default.
- W2891489434 cites W1973918589 @default.
- W2891489434 cites W1975301506 @default.
- W2891489434 cites W1975508975 @default.
- W2891489434 cites W1977138431 @default.
- W2891489434 cites W1983404855 @default.
- W2891489434 cites W1985030407 @default.
- W2891489434 cites W1987971958 @default.
- W2891489434 cites W1988702183 @default.
- W2891489434 cites W1988997815 @default.
- W2891489434 cites W1989205570 @default.
- W2891489434 cites W1990368529 @default.
- W2891489434 cites W1993384941 @default.
- W2891489434 cites W1993853204 @default.
- W2891489434 cites W1997022053 @default.
- W2891489434 cites W1997239501 @default.
- W2891489434 cites W1999479044 @default.
- W2891489434 cites W2000185878 @default.
- W2891489434 cites W2009011310 @default.
- W2891489434 cites W2018742491 @default.
- W2891489434 cites W2027279157 @default.
- W2891489434 cites W2027500038 @default.
- W2891489434 cites W2033454243 @default.
- W2891489434 cites W2046798501 @default.
- W2891489434 cites W2058353761 @default.
- W2891489434 cites W2066985277 @default.
- W2891489434 cites W2069461373 @default.
- W2891489434 cites W2087969305 @default.
- W2891489434 cites W2091083714 @default.
- W2891489434 cites W2091106212 @default.
- W2891489434 cites W2094391259 @default.
- W2891489434 cites W2095015602 @default.
- W2891489434 cites W2097092203 @default.
- W2891489434 cites W2103632971 @default.
- W2891489434 cites W2106398669 @default.
- W2891489434 cites W2107636174 @default.
- W2891489434 cites W2114424425 @default.
- W2891489434 cites W2120852816 @default.
- W2891489434 cites W2123974558 @default.
- W2891489434 cites W2126401818 @default.
- W2891489434 cites W2130281033 @default.
- W2891489434 cites W2130655654 @default.
- W2891489434 cites W2134408600 @default.
- W2891489434 cites W2136259449 @default.
- W2891489434 cites W2136297704 @default.
- W2891489434 cites W2136418941 @default.
- W2891489434 cites W2138211002 @default.
- W2891489434 cites W2140514146 @default.
- W2891489434 cites W2142635246 @default.
- W2891489434 cites W2151875561 @default.
- W2891489434 cites W2153046259 @default.
- W2891489434 cites W2157562389 @default.
- W2891489434 cites W2157594323 @default.
- W2891489434 cites W2160480437 @default.
- W2891489434 cites W2168175751 @default.
- W2891489434 cites W2171872146 @default.
- W2891489434 cites W2177319998 @default.
- W2891489434 cites W2253429366 @default.
- W2891489434 cites W2258968934 @default.
- W2891489434 cites W2270659945 @default.
- W2891489434 cites W2288298981 @default.
- W2891489434 cites W2294880450 @default.
- W2891489434 cites W2295085892 @default.
- W2891489434 cites W2297086838 @default.
- W2891489434 cites W2297663604 @default.
- W2891489434 cites W2321184265 @default.
- W2891489434 cites W2322152259 @default.
- W2891489434 cites W2470342634 @default.
- W2891489434 cites W2493329243 @default.
- W2891489434 cites W2518916291 @default.
- W2891489434 cites W2562493541 @default.
- W2891489434 cites W2588989789 @default.
- W2891489434 cites W2601954649 @default.
- W2891489434 cites W2604019843 @default.
- W2891489434 cites W2611875902 @default.
- W2891489434 cites W2612876124 @default.
- W2891489434 cites W2619375121 @default.
- W2891489434 cites W2620071263 @default.
- W2891489434 cites W2621399005 @default.
- W2891489434 cites W2743927120 @default.
- W2891489434 cites W2766447205 @default.
- W2891489434 cites W2769041395 @default.
- W2891489434 cites W2785890796 @default.