Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891489974> ?p ?o ?g. }
- W2891489974 endingPage "2033" @default.
- W2891489974 startingPage "2014" @default.
- W2891489974 abstract "Timely and reliable information on crop acreage is essential for formulating grain production policies and ensuring national food security. The combination of available satellite-based remotely sensed images and traditional sampling methods offers the possibility of improved crop acreage estimation at a regional scale. Due to the administrative convenience, reduced survey cost and workload, two-stage sampling has widely been used for crop acreage survey at the large-scale regions. However, compared with single-stage sampling, the two-stage sampling can introduce larger estimation errors, since it has multiple sampling stages. This study’s aim is to optimize the two-stage sampling scheme using satellite-based remotely sensed imagery to improve the accuracy of crop acreage estimation. Taking Mengcheng County, Anhui Province, China, as the study area, this study explored the influence of stratum boundary and sample selection method on the sampling efficiency at the first sampling stage, analysed the impact of sample size on population extrapolation accuracy and then optimized the sample size of the second sampling stage using crop thematic map retrieved by ALOS (Advanced Land Observing Satellite) AVNIR (Advanced Visible light and Near Infrared Radiometer)-2 images in 2009. The results showed that the relative error (RE), coefficient of variation (CV), standard error (SE) of population extrapolation, and sampling fraction (f) using the cumulative square root of frequency (CSRF) method is the minimum among three methods for the stratum boundary determination at the first sampling stage, followed by the equal interval (EI) and equal sample size (ESS) method. Moreover, the RE, CV, and SE of population extrapolation using the ST sampling method is the minimum, compared with simple random (SI) and systematic (SY) sampling method. Therefore, the sampling scheme of the first stage can be optimized by CSRF method for stratum boundary determination and stratified sampling (ST) sampling method for samples selection. At the second sampling stage, RE and CV values of population extrapolation decrease as the sample size increases. Comprehensively considering the accuracy, stability of population extrapolation and sampling cost, the most cost-effective sample size for estimating the winter wheat acreage of the study area is 4. From the perspective of the reasonable selection of sample selection methods, sample size and determination of stratum boundaries, this study provides an important basis for formulating a cost-effective two-stage spatial sampling scheme for crop acreage estimation." @default.
- W2891489974 created "2018-09-27" @default.
- W2891489974 creator A5036420109 @default.
- W2891489974 creator A5036733696 @default.
- W2891489974 creator A5052304130 @default.
- W2891489974 creator A5058040417 @default.
- W2891489974 creator A5089098780 @default.
- W2891489974 date "2018-09-10" @default.
- W2891489974 modified "2023-10-16" @default.
- W2891489974 title "An optimized two-stage spatial sampling scheme for winter wheat acreage estimation using remotely sensed imagery" @default.
- W2891489974 cites W1838764073 @default.
- W2891489974 cites W1980415116 @default.
- W2891489974 cites W1999110225 @default.
- W2891489974 cites W2004611847 @default.
- W2891489974 cites W2008085934 @default.
- W2891489974 cites W2010583300 @default.
- W2891489974 cites W2026879105 @default.
- W2891489974 cites W2034125835 @default.
- W2891489974 cites W2034955585 @default.
- W2891489974 cites W2037873485 @default.
- W2891489974 cites W2039554650 @default.
- W2891489974 cites W2050076538 @default.
- W2891489974 cites W2067039847 @default.
- W2891489974 cites W2068167377 @default.
- W2891489974 cites W2076186394 @default.
- W2891489974 cites W2082238948 @default.
- W2891489974 cites W2085201142 @default.
- W2891489974 cites W2098118384 @default.
- W2891489974 cites W2102932370 @default.
- W2891489974 cites W2103653062 @default.
- W2891489974 cites W2104088267 @default.
- W2891489974 cites W2136754539 @default.
- W2891489974 cites W2142231247 @default.
- W2891489974 cites W2143173879 @default.
- W2891489974 cites W2235201318 @default.
- W2891489974 cites W2578830027 @default.
- W2891489974 cites W586126754 @default.
- W2891489974 doi "https://doi.org/10.1080/01431161.2018.1516321" @default.
- W2891489974 hasPublicationYear "2018" @default.
- W2891489974 type Work @default.
- W2891489974 sameAs 2891489974 @default.
- W2891489974 citedByCount "2" @default.
- W2891489974 countsByYear W28914899742019 @default.
- W2891489974 countsByYear W28914899742022 @default.
- W2891489974 crossrefType "journal-article" @default.
- W2891489974 hasAuthorship W2891489974A5036420109 @default.
- W2891489974 hasAuthorship W2891489974A5036733696 @default.
- W2891489974 hasAuthorship W2891489974A5052304130 @default.
- W2891489974 hasAuthorship W2891489974A5058040417 @default.
- W2891489974 hasAuthorship W2891489974A5089098780 @default.
- W2891489974 hasConcept C105795698 @default.
- W2891489974 hasConcept C106131492 @default.
- W2891489974 hasConcept C129848803 @default.
- W2891489974 hasConcept C132459708 @default.
- W2891489974 hasConcept C140779682 @default.
- W2891489974 hasConcept C144024400 @default.
- W2891489974 hasConcept C146357865 @default.
- W2891489974 hasConcept C149923435 @default.
- W2891489974 hasConcept C151730666 @default.
- W2891489974 hasConcept C185592680 @default.
- W2891489974 hasConcept C198531522 @default.
- W2891489974 hasConcept C205649164 @default.
- W2891489974 hasConcept C2778102629 @default.
- W2891489974 hasConcept C2778755073 @default.
- W2891489974 hasConcept C2908647359 @default.
- W2891489974 hasConcept C31972630 @default.
- W2891489974 hasConcept C33923547 @default.
- W2891489974 hasConcept C39432304 @default.
- W2891489974 hasConcept C41008148 @default.
- W2891489974 hasConcept C43617362 @default.
- W2891489974 hasConcept C49898467 @default.
- W2891489974 hasConcept C58640448 @default.
- W2891489974 hasConcept C62649853 @default.
- W2891489974 hasConcept C75373757 @default.
- W2891489974 hasConcept C86803240 @default.
- W2891489974 hasConcept C93692415 @default.
- W2891489974 hasConceptScore W2891489974C105795698 @default.
- W2891489974 hasConceptScore W2891489974C106131492 @default.
- W2891489974 hasConceptScore W2891489974C129848803 @default.
- W2891489974 hasConceptScore W2891489974C132459708 @default.
- W2891489974 hasConceptScore W2891489974C140779682 @default.
- W2891489974 hasConceptScore W2891489974C144024400 @default.
- W2891489974 hasConceptScore W2891489974C146357865 @default.
- W2891489974 hasConceptScore W2891489974C149923435 @default.
- W2891489974 hasConceptScore W2891489974C151730666 @default.
- W2891489974 hasConceptScore W2891489974C185592680 @default.
- W2891489974 hasConceptScore W2891489974C198531522 @default.
- W2891489974 hasConceptScore W2891489974C205649164 @default.
- W2891489974 hasConceptScore W2891489974C2778102629 @default.
- W2891489974 hasConceptScore W2891489974C2778755073 @default.
- W2891489974 hasConceptScore W2891489974C2908647359 @default.
- W2891489974 hasConceptScore W2891489974C31972630 @default.
- W2891489974 hasConceptScore W2891489974C33923547 @default.
- W2891489974 hasConceptScore W2891489974C39432304 @default.
- W2891489974 hasConceptScore W2891489974C41008148 @default.
- W2891489974 hasConceptScore W2891489974C43617362 @default.
- W2891489974 hasConceptScore W2891489974C49898467 @default.
- W2891489974 hasConceptScore W2891489974C58640448 @default.