Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891490631> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2891490631 endingPage "1614" @default.
- W2891490631 startingPage "1612" @default.
- W2891490631 abstract "No AccessTechnical NoteBoundary-Layer Control for Effective Hypersonic IntakeAlex Ruban, Viren Menezes and Sridhar BalasubramanianAlex RubanIndian Institute of Technology Bombay, Mumbai 400 076, India*Ph.D. Student, Aerospace Engineering Department.Search for more papers by this author, Viren MenezesIndian Institute of Technology Bombay, Mumbai 400 076, India†Professor, Aerospace Engineering Department; .Search for more papers by this author and Sridhar BalasubramanianIndian Institute of Technology Bombay, Mumbai 400 076, India‡Associate Professor, Mechanical Engineering Department.Search for more papers by this authorPublished Online:2 Sep 2018https://doi.org/10.2514/1.B37066SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kim H. D., Matsuo K. and Setoguchi T., “Investigation on Onset of Shock-Induced Separation,” Shock Waves, Vol. 6, No. 5, 1996, pp. 275–286. doi:https://doi.org/10.1007/BF02535741 SHWAEN 0938-1287 CrossrefGoogle Scholar[2] Babinsky H. and Harvey J. K., Shock Wave–Boundary-Layer Interactions, Cambridge University Press, Cambridge, England, U.K., 2011, pp. 5–86. CrossrefGoogle Scholar[3] Delery J. and Dussauge J. P., “Some Physical Aspects of Shock Wave/Boundary Layer Interactions,” Shock Waves, Vol. 19, No. 2, 2009, pp. 453–468. doi:https://doi.org/10.1007/s00193-009-0220-z SHWAEN 0938-1287 CrossrefGoogle Scholar[4] Hamed A., Yeuan J. J. and Shih S. H., “Shock-Wave/Boundary-Layer Interactions with Bleed Part 1: Effect of Slot Angle,” Journal of Propulsion and Power, Vol. 11, No. 6, 1995, pp. 1231–1235. doi:https://doi.org/10.2514/3.23962 JPPOEL 0748-4658 LinkGoogle Scholar[5] Hamed A., Yeuan J. J. and Shih S. H., “Shock-Wave/Boundary-Layer Interactions with Bleed Part 2: Effect of Slot Location,” Journal of Propulsion and Power, Vol. 11, No. 6, 1995, pp. 1236–1241. doi:https://doi.org/10.2514/3.23963 JPPOEL 0748-4658 LinkGoogle Scholar[6] Slater J. W., “Improvements in Modeling 90-Degree Bleed Holes for Supersonic Inlets,” Journal of Propulsion and Power, Vol. 28, No. 4, 2012, pp. 773–781. doi:https://doi.org/10.2514/1.B34333 JPPOEL 0748-4658 LinkGoogle Scholar[7] Schulte D., Henckels A. and Neubacher R., “Manipulation of Shock/Boundary-Layer Interactions in Hypersonic Inlets,” Journal of Propulsion and Power, Vol. 17, No. 3, 2001, pp. 585–590. doi:https://doi.org/10.2514/2.5781 JPPOEL 0748-4658 LinkGoogle Scholar[8] Smith A. N., Babinsky H., Fulker J. L. and Ashill P. R., “Shock Wave/Boundary-Layer Interaction Control Using Streamwise Slots in Transonic Flows,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 540–546. doi:https://doi.org/10.2514/1.11479 LinkGoogle Scholar[9] Zhang Y., Tan H. J., Tian F. C. and Zhuang Y., “Control of Incident Shock/Boundary-Layer Interaction by a Two-Dimensional Bump,” AIAA Journal, Vol. 52, No. 4, 2014, pp. 767–776. doi:https://doi.org/10.2514/1.J052786 AIAJAH 0001-1452 LinkGoogle Scholar[10] McCormick D. C., “Shock/Boundary-Layer Interaction Control with Vortex Generators and Passive Cavity,” AIAA Journal, Vol. 31, No. 1, 1993, pp. 91–96. doi:https://doi.org/10.2514/3.11323 AIAJAH 0001-1452 LinkGoogle Scholar[11] Babinsky H., Li Y. and Ford C. W. P., “Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions,” AIAA Journal, Vol. 47, No. 3, 2009, pp. 668–675. doi:https://doi.org/10.2514/1.38022 AIAJAH 0001-1452 LinkGoogle Scholar[12] Delery J. M. and Bur R. S., “The Physics of Shock Wave/Boundary Layer Interaction Control: Last Lessons Learned,” European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, Barcelona, Spain, 2000, pp. 1–19.doi:https://doi.org/10.13140/2.1.4478.8169 Google Scholar[13] Macheret S. O., Shneider M. N. and Miles R. B., “Optimum Performance of Electron Beam Driven Magnetohydrodynamic Generators for Scramjet Inlet Control,” AIAA Journal, Vol. 45, No. 9, 2007, pp. 2157–2163. doi:https://doi.org/10.2514/1.16955 AIAJAH 0001-1452 LinkGoogle Scholar[14] Lee S. and Loth E., “Supersonic Boundary Layer Interactions with Various Micro-Vortex Generator Geometries,” AIAA Paper 2009-3712, June 2009. doi:https://doi.org/10.2514/6.2009-3712 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byStudy of multiple solution phenomenon for hypersonic air inletAerospace Science and TechnologyMach 5 Performance tests of Scramjet Engine Intake Using Free-jet Type Ground Propulsion Test FacilityJournal of the Korean Society of Propulsion Engineers, Vol. 26, No. 4Numerical Investigation of Three-dimensional Scramjet Inlet Flowfield with Porous Bleed Models at Mach 5Yoonsik Park, Yongsu Kim, Bok Jik Lee and Yang Ji Lee29 December 2021Hypersonic Incident Shock-Boundary Layer Interaction Control by Wavy PatchesJournal of Aerospace Engineering, Vol. 34, No. 1 What's Popular Volume 34, Number 6November 2018 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsBoundary LayersComputational Fluid DynamicsFinite Element MethodFinite Element SoftwareFluid DynamicsFluid MechanicsMagnetohydrodynamicsOblique Shock WavePlasma PhysicsShock WavesSpace Science and TechnologyVortex Dynamics KeywordsBoundary Layer SeparationHypersonic Shock TunnelScramjet EnginesInlet RampPressure TransducersMass FlowAdverse Pressure GradientCharge Coupled DeviceVortex GeneratorsMagnetohydrodynamic EffectsPDF Received22 January 2018Accepted26 July 2018Published online2 September 2018" @default.
- W2891490631 created "2018-09-27" @default.
- W2891490631 creator A5067040142 @default.
- W2891490631 creator A5070450820 @default.
- W2891490631 creator A5076582233 @default.
- W2891490631 date "2018-11-01" @default.
- W2891490631 modified "2023-09-25" @default.
- W2891490631 title "Boundary-Layer Control for Effective Hypersonic Intake" @default.
- W2891490631 cites W1966615841 @default.
- W2891490631 cites W1985955770 @default.
- W2891490631 cites W2014002200 @default.
- W2891490631 cites W2029299379 @default.
- W2891490631 cites W2034739300 @default.
- W2891490631 cites W2046326482 @default.
- W2891490631 cites W2062937498 @default.
- W2891490631 cites W2068751360 @default.
- W2891490631 cites W2087107018 @default.
- W2891490631 cites W2154942739 @default.
- W2891490631 cites W2314611941 @default.
- W2891490631 cites W3174949731 @default.
- W2891490631 cites W567783824 @default.
- W2891490631 doi "https://doi.org/10.2514/1.b37066" @default.
- W2891490631 hasPublicationYear "2018" @default.
- W2891490631 type Work @default.
- W2891490631 sameAs 2891490631 @default.
- W2891490631 citedByCount "3" @default.
- W2891490631 countsByYear W28914906312021 @default.
- W2891490631 countsByYear W28914906312022 @default.
- W2891490631 crossrefType "journal-article" @default.
- W2891490631 hasAuthorship W2891490631A5067040142 @default.
- W2891490631 hasAuthorship W2891490631A5070450820 @default.
- W2891490631 hasAuthorship W2891490631A5076582233 @default.
- W2891490631 hasConcept C111603439 @default.
- W2891490631 hasConcept C121332964 @default.
- W2891490631 hasConcept C122824865 @default.
- W2891490631 hasConcept C127413603 @default.
- W2891490631 hasConcept C146978453 @default.
- W2891490631 hasConcept C167740415 @default.
- W2891490631 hasConcept C178802073 @default.
- W2891490631 hasConcept C70477161 @default.
- W2891490631 hasConcept C78519656 @default.
- W2891490631 hasConceptScore W2891490631C111603439 @default.
- W2891490631 hasConceptScore W2891490631C121332964 @default.
- W2891490631 hasConceptScore W2891490631C122824865 @default.
- W2891490631 hasConceptScore W2891490631C127413603 @default.
- W2891490631 hasConceptScore W2891490631C146978453 @default.
- W2891490631 hasConceptScore W2891490631C167740415 @default.
- W2891490631 hasConceptScore W2891490631C178802073 @default.
- W2891490631 hasConceptScore W2891490631C70477161 @default.
- W2891490631 hasConceptScore W2891490631C78519656 @default.
- W2891490631 hasIssue "6" @default.
- W2891490631 hasLocation W28914906311 @default.
- W2891490631 hasOpenAccess W2891490631 @default.
- W2891490631 hasPrimaryLocation W28914906311 @default.
- W2891490631 hasRelatedWork W2117916847 @default.
- W2891490631 hasRelatedWork W2167570386 @default.
- W2891490631 hasRelatedWork W2313554012 @default.
- W2891490631 hasRelatedWork W2621135434 @default.
- W2891490631 hasRelatedWork W291591453 @default.
- W2891490631 hasRelatedWork W3202293633 @default.
- W2891490631 hasRelatedWork W3215499847 @default.
- W2891490631 hasRelatedWork W4241125977 @default.
- W2891490631 hasRelatedWork W4252062074 @default.
- W2891490631 hasRelatedWork W2470590403 @default.
- W2891490631 hasVolume "34" @default.
- W2891490631 isParatext "false" @default.
- W2891490631 isRetracted "false" @default.
- W2891490631 magId "2891490631" @default.
- W2891490631 workType "article" @default.