Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891499525> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2891499525 abstract "Recently deep learning has been playing a major role in the field of computer vision. One of its applications is the reduction of human judgment in the diagnosis of diseases. Especially, brain tumor diagnosis requires high accuracy, where minute errors in judgment may lead to disaster. For this reason, brain tumor segmentation is an important challenge for medical purposes. Currently several methods exist for tumor segmentation but they all lack high accuracy. Here we present a solution for brain tumor segmenting by using deep learning. In this work, we studied different angles of brain MR images and applied different networks for segmentation. The effect of using separate networks for segmentation of MR images is evaluated by comparing the results with a single network. Experimental evaluations of the networks show that Dice score of 0.73 is achieved for a single network and 0.79 in obtained for multiple networks." @default.
- W2891499525 created "2018-09-27" @default.
- W2891499525 creator A5001420311 @default.
- W2891499525 creator A5018122006 @default.
- W2891499525 creator A5020232391 @default.
- W2891499525 creator A5023464012 @default.
- W2891499525 creator A5029457331 @default.
- W2891499525 creator A5049209415 @default.
- W2891499525 creator A5085519984 @default.
- W2891499525 creator A5086843767 @default.
- W2891499525 date "2018-09-20" @default.
- W2891499525 modified "2023-09-26" @default.
- W2891499525 title "Brain Tumor Segmentation Using Deep Learning by Type Specific Sorting of Images." @default.
- W2891499525 cites W2538301961 @default.
- W2891499525 cites W2609625738 @default.
- W2891499525 cites W2807491613 @default.
- W2891499525 cites W2810138651 @default.
- W2891499525 hasPublicationYear "2018" @default.
- W2891499525 type Work @default.
- W2891499525 sameAs 2891499525 @default.
- W2891499525 citedByCount "6" @default.
- W2891499525 countsByYear W28914995252019 @default.
- W2891499525 countsByYear W28914995252020 @default.
- W2891499525 countsByYear W28914995252021 @default.
- W2891499525 crossrefType "posted-content" @default.
- W2891499525 hasAuthorship W2891499525A5001420311 @default.
- W2891499525 hasAuthorship W2891499525A5018122006 @default.
- W2891499525 hasAuthorship W2891499525A5020232391 @default.
- W2891499525 hasAuthorship W2891499525A5023464012 @default.
- W2891499525 hasAuthorship W2891499525A5029457331 @default.
- W2891499525 hasAuthorship W2891499525A5049209415 @default.
- W2891499525 hasAuthorship W2891499525A5085519984 @default.
- W2891499525 hasAuthorship W2891499525A5086843767 @default.
- W2891499525 hasConcept C108583219 @default.
- W2891499525 hasConcept C111696304 @default.
- W2891499525 hasConcept C119857082 @default.
- W2891499525 hasConcept C124504099 @default.
- W2891499525 hasConcept C125308379 @default.
- W2891499525 hasConcept C142724271 @default.
- W2891499525 hasConcept C144133560 @default.
- W2891499525 hasConcept C153180895 @default.
- W2891499525 hasConcept C154945302 @default.
- W2891499525 hasConcept C162853370 @default.
- W2891499525 hasConcept C199360897 @default.
- W2891499525 hasConcept C22029948 @default.
- W2891499525 hasConcept C2524010 @default.
- W2891499525 hasConcept C2779130545 @default.
- W2891499525 hasConcept C31972630 @default.
- W2891499525 hasConcept C33923547 @default.
- W2891499525 hasConcept C41008148 @default.
- W2891499525 hasConcept C71924100 @default.
- W2891499525 hasConcept C89600930 @default.
- W2891499525 hasConceptScore W2891499525C108583219 @default.
- W2891499525 hasConceptScore W2891499525C111696304 @default.
- W2891499525 hasConceptScore W2891499525C119857082 @default.
- W2891499525 hasConceptScore W2891499525C124504099 @default.
- W2891499525 hasConceptScore W2891499525C125308379 @default.
- W2891499525 hasConceptScore W2891499525C142724271 @default.
- W2891499525 hasConceptScore W2891499525C144133560 @default.
- W2891499525 hasConceptScore W2891499525C153180895 @default.
- W2891499525 hasConceptScore W2891499525C154945302 @default.
- W2891499525 hasConceptScore W2891499525C162853370 @default.
- W2891499525 hasConceptScore W2891499525C199360897 @default.
- W2891499525 hasConceptScore W2891499525C22029948 @default.
- W2891499525 hasConceptScore W2891499525C2524010 @default.
- W2891499525 hasConceptScore W2891499525C2779130545 @default.
- W2891499525 hasConceptScore W2891499525C31972630 @default.
- W2891499525 hasConceptScore W2891499525C33923547 @default.
- W2891499525 hasConceptScore W2891499525C41008148 @default.
- W2891499525 hasConceptScore W2891499525C71924100 @default.
- W2891499525 hasConceptScore W2891499525C89600930 @default.
- W2891499525 hasLocation W28914995251 @default.
- W2891499525 hasOpenAccess W2891499525 @default.
- W2891499525 hasPrimaryLocation W28914995251 @default.
- W2891499525 hasRelatedWork W2310992461 @default.
- W2891499525 hasRelatedWork W2538556778 @default.
- W2891499525 hasRelatedWork W2780099243 @default.
- W2891499525 hasRelatedWork W2791477884 @default.
- W2891499525 hasRelatedWork W2792665102 @default.
- W2891499525 hasRelatedWork W2899074990 @default.
- W2891499525 hasRelatedWork W2951969361 @default.
- W2891499525 hasRelatedWork W2954704152 @default.
- W2891499525 hasRelatedWork W2962873038 @default.
- W2891499525 hasRelatedWork W2983360748 @default.
- W2891499525 hasRelatedWork W2989711391 @default.
- W2891499525 hasRelatedWork W3004660901 @default.
- W2891499525 hasRelatedWork W3010874896 @default.
- W2891499525 hasRelatedWork W3093140571 @default.
- W2891499525 hasRelatedWork W3123028012 @default.
- W2891499525 hasRelatedWork W3148027040 @default.
- W2891499525 hasRelatedWork W3168149663 @default.
- W2891499525 hasRelatedWork W3180942661 @default.
- W2891499525 hasRelatedWork W3188620589 @default.
- W2891499525 hasRelatedWork W3198503790 @default.
- W2891499525 isParatext "false" @default.
- W2891499525 isRetracted "false" @default.
- W2891499525 magId "2891499525" @default.
- W2891499525 workType "article" @default.