Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891520781> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2891520781 abstract "An Information Fusion System (IFS) is a complex system consisting of various interdependent elements such as sensors, information processors, fusers, sense-makers, and resource managers, etc. These elements are typically designed and evaluated independently, but isolated performance evaluation does not scale to a system-level performance in complex systems. Since the IFS capability results from the collective behavior of these elements, identifying interactions becomes critical for engineering an IFS. In this paper, we investigate machine learning techniques (deep neural networks and general linear models) to provide holistic performance evaluation of the IFS, where the objective is to understand IFS design implications based on variations and interactions of its constituents elements. The challenge for employing machine learning techniques is the availability of a data set to build a predictive performance model of the IFS. We utilize Optimal Design of Experiments to provide the data collection strategy for building the machine learning models, and our results demonstrate that it is imperative to include interactions in the data collection strategy. This attests to the significance of interactions and advises against the independent design and evaluation of IFS constituent elements. Furthermore, we demonstrate how the IFS designers can leverage insights from statistical analysis to exploit interactions between elements to improve IFS design and its performance." @default.
- W2891520781 created "2018-09-27" @default.
- W2891520781 creator A5009442525 @default.
- W2891520781 creator A5015078987 @default.
- W2891520781 creator A5027946344 @default.
- W2891520781 creator A5052135588 @default.
- W2891520781 creator A5052718891 @default.
- W2891520781 date "2018-07-01" @default.
- W2891520781 modified "2023-09-24" @default.
- W2891520781 title "Identifying Interactions for Information Fusion System Design Using Machine Learning Techniques" @default.
- W2891520781 cites W1979058254 @default.
- W2891520781 cites W2011082703 @default.
- W2891520781 cites W2038420319 @default.
- W2891520781 cites W2090744365 @default.
- W2891520781 cites W2112531614 @default.
- W2891520781 cites W2145154622 @default.
- W2891520781 cites W2148474843 @default.
- W2891520781 cites W2531498086 @default.
- W2891520781 cites W2742941885 @default.
- W2891520781 cites W2744293020 @default.
- W2891520781 cites W2801598934 @default.
- W2891520781 cites W2954731074 @default.
- W2891520781 cites W4214774854 @default.
- W2891520781 cites W4244868513 @default.
- W2891520781 cites W4255179379 @default.
- W2891520781 doi "https://doi.org/10.23919/icif.2018.8455429" @default.
- W2891520781 hasPublicationYear "2018" @default.
- W2891520781 type Work @default.
- W2891520781 sameAs 2891520781 @default.
- W2891520781 citedByCount "12" @default.
- W2891520781 countsByYear W28915207812019 @default.
- W2891520781 countsByYear W28915207812020 @default.
- W2891520781 countsByYear W28915207812021 @default.
- W2891520781 countsByYear W28915207812022 @default.
- W2891520781 countsByYear W28915207812023 @default.
- W2891520781 crossrefType "proceedings-article" @default.
- W2891520781 hasAuthorship W2891520781A5009442525 @default.
- W2891520781 hasAuthorship W2891520781A5015078987 @default.
- W2891520781 hasAuthorship W2891520781A5027946344 @default.
- W2891520781 hasAuthorship W2891520781A5052135588 @default.
- W2891520781 hasAuthorship W2891520781A5052718891 @default.
- W2891520781 hasConcept C119857082 @default.
- W2891520781 hasConcept C120314980 @default.
- W2891520781 hasConcept C153083717 @default.
- W2891520781 hasConcept C154945302 @default.
- W2891520781 hasConcept C165696696 @default.
- W2891520781 hasConcept C177264268 @default.
- W2891520781 hasConcept C17744445 @default.
- W2891520781 hasConcept C185874996 @default.
- W2891520781 hasConcept C199360897 @default.
- W2891520781 hasConcept C199539241 @default.
- W2891520781 hasConcept C38652104 @default.
- W2891520781 hasConcept C41008148 @default.
- W2891520781 hasConcept C50644808 @default.
- W2891520781 hasConceptScore W2891520781C119857082 @default.
- W2891520781 hasConceptScore W2891520781C120314980 @default.
- W2891520781 hasConceptScore W2891520781C153083717 @default.
- W2891520781 hasConceptScore W2891520781C154945302 @default.
- W2891520781 hasConceptScore W2891520781C165696696 @default.
- W2891520781 hasConceptScore W2891520781C177264268 @default.
- W2891520781 hasConceptScore W2891520781C17744445 @default.
- W2891520781 hasConceptScore W2891520781C185874996 @default.
- W2891520781 hasConceptScore W2891520781C199360897 @default.
- W2891520781 hasConceptScore W2891520781C199539241 @default.
- W2891520781 hasConceptScore W2891520781C38652104 @default.
- W2891520781 hasConceptScore W2891520781C41008148 @default.
- W2891520781 hasConceptScore W2891520781C50644808 @default.
- W2891520781 hasLocation W28915207811 @default.
- W2891520781 hasOpenAccess W2891520781 @default.
- W2891520781 hasPrimaryLocation W28915207811 @default.
- W2891520781 hasRelatedWork W2128417237 @default.
- W2891520781 hasRelatedWork W2331043530 @default.
- W2891520781 hasRelatedWork W2374820792 @default.
- W2891520781 hasRelatedWork W2798029542 @default.
- W2891520781 hasRelatedWork W2964604098 @default.
- W2891520781 hasRelatedWork W2997512100 @default.
- W2891520781 hasRelatedWork W4226328666 @default.
- W2891520781 hasRelatedWork W4379255972 @default.
- W2891520781 hasRelatedWork W4383955378 @default.
- W2891520781 hasRelatedWork W1629725936 @default.
- W2891520781 isParatext "false" @default.
- W2891520781 isRetracted "false" @default.
- W2891520781 magId "2891520781" @default.
- W2891520781 workType "article" @default.