Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891525441> ?p ?o ?g. }
- W2891525441 endingPage "5265" @default.
- W2891525441 startingPage "5251" @default.
- W2891525441 abstract "Threats to standing balance (postural threat) are known to facilitate soleus tendon-tap reflexes, yet the mechanisms driving reflex changes are unknown. Scaling of ramp-and-hold dorsiflexion stretch reflexes to stretch velocity and amplitude were examined as indirect measures of changes to muscle spindle dynamic and static function with height-induced postural threat. Overall, stretch reflexes were larger with threat. Furthermore, the slope (gain) of the stretch-velocity vs. short-latency reflex amplitude relationship was increased with threat. These findings are interpreted as indirect evidence for increased muscle spindle dynamic sensitivity, independent of changes in background muscle activity levels, with a threat to standing balance. We argue that context-dependent scaling of stretch reflexes forms part of a multisensory tuning process where acquisition and/or processing of balance-relevant sensory information is continuously primed to facilitate feedback control of standing balance in challenging balance scenarios.Postural threat increases soleus tendon-tap (t-) reflexes. However, it is not known whether t-reflex changes are a result of central modulation, altered muscle spindle dynamic sensitivity or combined spindle static and dynamic sensitization. Ramp-and-hold dorsiflexion stretches of varying velocities and amplitudes were used to examine velocity- and amplitude-dependent scaling of short- (SLR) and medium-latency (MLR) stretch reflexes as an indirect indicator of spindle sensitivity. t-reflexes were also performed to replicate previous work. In the present study, we examined the effects of postural threat on SLR, MLR and t-reflex amplitude, as well as SLR-stretch velocity scaling. Forty young-healthy adults stood with one foot on a servo-controlled tilting platform and the other on a stable surface. The platform was positioned on a hydraulic lift. Threat was manipulated by having participants stand in low (height 1.1 m; away from edge) then high (height 3.5 m; at the edge) threat conditions. Soleus stretch reflexes were recorded with surface electromyography and SLRs and MLRs were probed with fixed-amplitude variable-velocity stretches. t-reflexes were evoked with Achilles tendon taps using a linear motor. SLR, MLR and t-reflexes were 11%, 9.5% and 16.9% larger, respectively, in the high compared to low threat condition. In 22 out of 40 participants, SLR amplitude was correlated to stretch velocity at both threat levels. In these participants, the gain of the SLR-velocity relationship was increased by 36.1% with high postural threat. These findings provide new supportive evidence for increased muscle spindle dynamic sensitivity with postural threat and provide further support for the context-dependent modulation of human somatosensory pathways." @default.
- W2891525441 created "2018-09-27" @default.
- W2891525441 creator A5010149686 @default.
- W2891525441 creator A5013199768 @default.
- W2891525441 creator A5024588254 @default.
- W2891525441 creator A5050304088 @default.
- W2891525441 creator A5077701446 @default.
- W2891525441 date "2018-10-09" @default.
- W2891525441 modified "2023-10-01" @default.
- W2891525441 title "Increased human stretch reflex dynamic sensitivity with height-induced postural threat" @default.
- W2891525441 cites W111448621 @default.
- W2891525441 cites W1479741291 @default.
- W2891525441 cites W1964261824 @default.
- W2891525441 cites W1968311161 @default.
- W2891525441 cites W1969797744 @default.
- W2891525441 cites W1975756475 @default.
- W2891525441 cites W1981336856 @default.
- W2891525441 cites W1985899016 @default.
- W2891525441 cites W1987737534 @default.
- W2891525441 cites W1988548927 @default.
- W2891525441 cites W1993420015 @default.
- W2891525441 cites W1998288133 @default.
- W2891525441 cites W2003697795 @default.
- W2891525441 cites W2004970635 @default.
- W2891525441 cites W2009062103 @default.
- W2891525441 cites W2012585182 @default.
- W2891525441 cites W2013272709 @default.
- W2891525441 cites W2015786519 @default.
- W2891525441 cites W2018142520 @default.
- W2891525441 cites W2019724270 @default.
- W2891525441 cites W2026121589 @default.
- W2891525441 cites W2043758776 @default.
- W2891525441 cites W2057921093 @default.
- W2891525441 cites W2065544823 @default.
- W2891525441 cites W2066359631 @default.
- W2891525441 cites W2068654207 @default.
- W2891525441 cites W2074896166 @default.
- W2891525441 cites W2075723085 @default.
- W2891525441 cites W2084057308 @default.
- W2891525441 cites W2084876889 @default.
- W2891525441 cites W2088421521 @default.
- W2891525441 cites W2089001613 @default.
- W2891525441 cites W2091850962 @default.
- W2891525441 cites W2104030714 @default.
- W2891525441 cites W2113568942 @default.
- W2891525441 cites W2122371015 @default.
- W2891525441 cites W2139586924 @default.
- W2891525441 cites W2146749703 @default.
- W2891525441 cites W2151838439 @default.
- W2891525441 cites W2160877067 @default.
- W2891525441 cites W2165116949 @default.
- W2891525441 cites W2165940852 @default.
- W2891525441 cites W2187517848 @default.
- W2891525441 cites W2213538949 @default.
- W2891525441 cites W2266419853 @default.
- W2891525441 cites W2291805144 @default.
- W2891525441 cites W2308651644 @default.
- W2891525441 cites W2317893181 @default.
- W2891525441 cites W2340605097 @default.
- W2891525441 cites W2416883013 @default.
- W2891525441 cites W2555142855 @default.
- W2891525441 cites W2594157293 @default.
- W2891525441 cites W2602212655 @default.
- W2891525441 cites W2742731757 @default.
- W2891525441 cites W2781589231 @default.
- W2891525441 cites W2803645445 @default.
- W2891525441 cites W4299666922 @default.
- W2891525441 doi "https://doi.org/10.1113/jp276459" @default.
- W2891525441 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6209743" @default.
- W2891525441 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30176053" @default.
- W2891525441 hasPublicationYear "2018" @default.
- W2891525441 type Work @default.
- W2891525441 sameAs 2891525441 @default.
- W2891525441 citedByCount "27" @default.
- W2891525441 countsByYear W28915254412018 @default.
- W2891525441 countsByYear W28915254412019 @default.
- W2891525441 countsByYear W28915254412020 @default.
- W2891525441 countsByYear W28915254412021 @default.
- W2891525441 countsByYear W28915254412022 @default.
- W2891525441 countsByYear W28915254412023 @default.
- W2891525441 crossrefType "journal-article" @default.
- W2891525441 hasAuthorship W2891525441A5010149686 @default.
- W2891525441 hasAuthorship W2891525441A5013199768 @default.
- W2891525441 hasAuthorship W2891525441A5024588254 @default.
- W2891525441 hasAuthorship W2891525441A5050304088 @default.
- W2891525441 hasAuthorship W2891525441A5077701446 @default.
- W2891525441 hasBestOaLocation W28915254411 @default.
- W2891525441 hasConcept C121332964 @default.
- W2891525441 hasConcept C15744967 @default.
- W2891525441 hasConcept C166151169 @default.
- W2891525441 hasConcept C168031717 @default.
- W2891525441 hasConcept C169760540 @default.
- W2891525441 hasConcept C180205008 @default.
- W2891525441 hasConcept C2777515770 @default.
- W2891525441 hasConcept C2778828891 @default.
- W2891525441 hasConcept C2779263132 @default.
- W2891525441 hasConcept C2780832504 @default.
- W2891525441 hasConcept C41008148 @default.