Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891534395> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2891534395 endingPage "3712" @default.
- W2891534395 startingPage "3701" @default.
- W2891534395 abstract "Asphalt roads are the basic component of a land transportation system, and the quality of asphalt roads will decrease during the use stage because of the aging and deterioration of the road surface. In the end, some road pavement distresses may appear on the road surface, such as the most common potholes and cracks. In order to improve the efficiency of pavement inspection, currently some new forms of remote sensing data without destructive effect on the pavement are widely used to detect the pavement distresses, such as digital images, light detection and ranging, and radar. Multispectral imagery presenting spatial and spectral features of objects has been widely used in remote sensing application. In our study, the multispectral pavement images acquired by unmanned aerial vehicle (UAV) were used to distinguish between the normal pavement and pavement damages (e.g., cracks and potholes) using machine learning algorithms, such as support vector machine, artificial neural network, and random forest. Comparison of the performance between different data types and models was conducted and is discussed in this study, and indicates that a UAV remote sensing system offers a new tool for monitoring asphalt road pavement condition, which can be used as decision support for road maintenance practice." @default.
- W2891534395 created "2018-09-27" @default.
- W2891534395 creator A5003892209 @default.
- W2891534395 creator A5011362394 @default.
- W2891534395 creator A5016709118 @default.
- W2891534395 creator A5087294951 @default.
- W2891534395 date "2018-10-01" @default.
- W2891534395 modified "2023-10-10" @default.
- W2891534395 title "Detection of Asphalt Pavement Potholes and Cracks Based on the Unmanned Aerial Vehicle Multispectral Imagery" @default.
- W2891534395 cites W1485843859 @default.
- W2891534395 cites W1544500235 @default.
- W2891534395 cites W1963782251 @default.
- W2891534395 cites W1973368488 @default.
- W2891534395 cites W1976249651 @default.
- W2891534395 cites W1978164061 @default.
- W2891534395 cites W1981533337 @default.
- W2891534395 cites W2015508495 @default.
- W2891534395 cites W2058620809 @default.
- W2891534395 cites W2089214194 @default.
- W2891534395 cites W2102270813 @default.
- W2891534395 cites W2106587382 @default.
- W2891534395 cites W2112016172 @default.
- W2891534395 cites W2127971064 @default.
- W2891534395 cites W2128880484 @default.
- W2891534395 cites W2133251833 @default.
- W2891534395 cites W2140852221 @default.
- W2891534395 cites W2155261478 @default.
- W2891534395 cites W2160282206 @default.
- W2891534395 cites W2166658286 @default.
- W2891534395 cites W2168463792 @default.
- W2891534395 cites W2520959394 @default.
- W2891534395 cites W2542711146 @default.
- W2891534395 cites W2565354498 @default.
- W2891534395 cites W2569747019 @default.
- W2891534395 cites W2746523014 @default.
- W2891534395 cites W2748643398 @default.
- W2891534395 cites W2911964244 @default.
- W2891534395 cites W4230146424 @default.
- W2891534395 doi "https://doi.org/10.1109/jstars.2018.2865528" @default.
- W2891534395 hasPublicationYear "2018" @default.
- W2891534395 type Work @default.
- W2891534395 sameAs 2891534395 @default.
- W2891534395 citedByCount "92" @default.
- W2891534395 countsByYear W28915343952019 @default.
- W2891534395 countsByYear W28915343952020 @default.
- W2891534395 countsByYear W28915343952021 @default.
- W2891534395 countsByYear W28915343952022 @default.
- W2891534395 countsByYear W28915343952023 @default.
- W2891534395 crossrefType "journal-article" @default.
- W2891534395 hasAuthorship W2891534395A5003892209 @default.
- W2891534395 hasAuthorship W2891534395A5011362394 @default.
- W2891534395 hasAuthorship W2891534395A5016709118 @default.
- W2891534395 hasAuthorship W2891534395A5087294951 @default.
- W2891534395 hasBestOaLocation W28915343951 @default.
- W2891534395 hasConcept C127313418 @default.
- W2891534395 hasConcept C168056786 @default.
- W2891534395 hasConcept C173163844 @default.
- W2891534395 hasConcept C205649164 @default.
- W2891534395 hasConcept C2987819851 @default.
- W2891534395 hasConcept C39432304 @default.
- W2891534395 hasConcept C58640448 @default.
- W2891534395 hasConcept C62649853 @default.
- W2891534395 hasConceptScore W2891534395C127313418 @default.
- W2891534395 hasConceptScore W2891534395C168056786 @default.
- W2891534395 hasConceptScore W2891534395C173163844 @default.
- W2891534395 hasConceptScore W2891534395C205649164 @default.
- W2891534395 hasConceptScore W2891534395C2987819851 @default.
- W2891534395 hasConceptScore W2891534395C39432304 @default.
- W2891534395 hasConceptScore W2891534395C58640448 @default.
- W2891534395 hasConceptScore W2891534395C62649853 @default.
- W2891534395 hasFunder F4320321001 @default.
- W2891534395 hasIssue "10" @default.
- W2891534395 hasLocation W28915343951 @default.
- W2891534395 hasLocation W28915343952 @default.
- W2891534395 hasOpenAccess W2891534395 @default.
- W2891534395 hasPrimaryLocation W28915343951 @default.
- W2891534395 hasRelatedWork W1987044908 @default.
- W2891534395 hasRelatedWork W2047232586 @default.
- W2891534395 hasRelatedWork W2133125644 @default.
- W2891534395 hasRelatedWork W2133144887 @default.
- W2891534395 hasRelatedWork W2139294397 @default.
- W2891534395 hasRelatedWork W2145982493 @default.
- W2891534395 hasRelatedWork W2776398399 @default.
- W2891534395 hasRelatedWork W2905390890 @default.
- W2891534395 hasRelatedWork W2912130932 @default.
- W2891534395 hasRelatedWork W2960267326 @default.
- W2891534395 hasVolume "11" @default.
- W2891534395 isParatext "false" @default.
- W2891534395 isRetracted "false" @default.
- W2891534395 magId "2891534395" @default.
- W2891534395 workType "article" @default.