Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891540726> ?p ?o ?g. }
- W2891540726 abstract "Let $mathcal{A}$ be a $C^*$-algebra, and consider the Banach algebra $mathcal{A} otimes_gamma mathcal{A}$, where $otimes_gamma$ denotes the projective Banach space tensor product; if $mathcal{A}$ is commutative, this is the Varopoulos algebra $V_mathcal{A}$. It has been an open problem for more than 35 years to determine precisely when $mathcal{A} otimes_gamma mathcal{A}$ is Arens regular. Even the situation for commutative $mathcal{A}$, in particular the case $mathcal{A} = ell_infty$, has remained unsolved. We solve this classical question for arbitrary $C^*$-algebras by using von Neumann algebra and operator space methods, mainly relying on versions of the (commutative and non-commutative) Grothendieck Theorem, and the structure of completely bounded module maps. Establishing these links allows us to show that $mathcal{A} otimes_gamma mathcal{A}$ is Arens regular if and only if $mathcal{A}$ has the Phillips property; equivalently, $mathcal{A}$ is scattered and has the Dunford--Pettis Property. A further equivalent condition is that $mathcal{A}^*$ has the Schur property, or, again equivalently, the enveloping von Neumann algebra $mathcal{A}^{**}$ is finite atomic, i.e., a direct sum of matrix algebras. Hence, Arens regularity of $mathcal{A} otimes_gamma mathcal{A}$ is encoded in the geometry of the $C^*$-algebra $mathcal{A}$. In case $mathcal{A}$ is a von Neumann algebra, we conclude that $mathcal{A} otimes_gamma mathcal{A}$ is Arens regular (if and) only if $mathcal{A}$ is finite-dimensional. For commutative $C^*$-algebras $mathcal{A}$, we determine precisely the centre of the bidual, namely, $Z({V_mathcal{A}}^{**})$ is Banach algebra isomorphic to $mathcal{A}^{**} otimes_{eh} mathcal{A}^{**}$, where $otimes_{eh}$ denotes the extended Haagerup tensor product." @default.
- W2891540726 created "2018-09-27" @default.
- W2891540726 creator A5087063369 @default.
- W2891540726 date "2018-09-15" @default.
- W2891540726 modified "2023-09-27" @default.
- W2891540726 title "Geometry of $C^*$-algebras, the bidual of their projective tensor product, and completely bounded module maps" @default.
- W2891540726 cites W1531214817 @default.
- W2891540726 cites W1533233993 @default.
- W2891540726 cites W1627082186 @default.
- W2891540726 cites W1896093874 @default.
- W2891540726 cites W1913232305 @default.
- W2891540726 cites W1978281311 @default.
- W2891540726 cites W2011817430 @default.
- W2891540726 cites W2022986599 @default.
- W2891540726 cites W2023538744 @default.
- W2891540726 cites W2029573719 @default.
- W2891540726 cites W2031264228 @default.
- W2891540726 cites W2034606919 @default.
- W2891540726 cites W2039517632 @default.
- W2891540726 cites W204175829 @default.
- W2891540726 cites W2042296863 @default.
- W2891540726 cites W2042333634 @default.
- W2891540726 cites W2047317223 @default.
- W2891540726 cites W2068985100 @default.
- W2891540726 cites W2069199957 @default.
- W2891540726 cites W2075214254 @default.
- W2891540726 cites W2079435966 @default.
- W2891540726 cites W2095215154 @default.
- W2891540726 cites W2145595809 @default.
- W2891540726 cites W2152703935 @default.
- W2891540726 cites W2170379681 @default.
- W2891540726 cites W2323772255 @default.
- W2891540726 cites W2341904170 @default.
- W2891540726 cites W3104946424 @default.
- W2891540726 cites W600870523 @default.
- W2891540726 cites W610829328 @default.
- W2891540726 cites W1502522528 @default.
- W2891540726 hasPublicationYear "2018" @default.
- W2891540726 type Work @default.
- W2891540726 sameAs 2891540726 @default.
- W2891540726 citedByCount "0" @default.
- W2891540726 crossrefType "posted-content" @default.
- W2891540726 hasAuthorship W2891540726A5087063369 @default.
- W2891540726 hasConcept C114614502 @default.
- W2891540726 hasConcept C118615104 @default.
- W2891540726 hasConcept C134306372 @default.
- W2891540726 hasConcept C136119220 @default.
- W2891540726 hasConcept C138885662 @default.
- W2891540726 hasConcept C153408630 @default.
- W2891540726 hasConcept C161491579 @default.
- W2891540726 hasConcept C183778304 @default.
- W2891540726 hasConcept C202444582 @default.
- W2891540726 hasConcept C2524010 @default.
- W2891540726 hasConcept C2778572836 @default.
- W2891540726 hasConcept C33923547 @default.
- W2891540726 hasConcept C34388435 @default.
- W2891540726 hasConcept C41895202 @default.
- W2891540726 hasConcept C51255310 @default.
- W2891540726 hasConcept C80469333 @default.
- W2891540726 hasConcept C90673727 @default.
- W2891540726 hasConceptScore W2891540726C114614502 @default.
- W2891540726 hasConceptScore W2891540726C118615104 @default.
- W2891540726 hasConceptScore W2891540726C134306372 @default.
- W2891540726 hasConceptScore W2891540726C136119220 @default.
- W2891540726 hasConceptScore W2891540726C138885662 @default.
- W2891540726 hasConceptScore W2891540726C153408630 @default.
- W2891540726 hasConceptScore W2891540726C161491579 @default.
- W2891540726 hasConceptScore W2891540726C183778304 @default.
- W2891540726 hasConceptScore W2891540726C202444582 @default.
- W2891540726 hasConceptScore W2891540726C2524010 @default.
- W2891540726 hasConceptScore W2891540726C2778572836 @default.
- W2891540726 hasConceptScore W2891540726C33923547 @default.
- W2891540726 hasConceptScore W2891540726C34388435 @default.
- W2891540726 hasConceptScore W2891540726C41895202 @default.
- W2891540726 hasConceptScore W2891540726C51255310 @default.
- W2891540726 hasConceptScore W2891540726C80469333 @default.
- W2891540726 hasConceptScore W2891540726C90673727 @default.
- W2891540726 hasLocation W28915407261 @default.
- W2891540726 hasOpenAccess W2891540726 @default.
- W2891540726 hasPrimaryLocation W28915407261 @default.
- W2891540726 hasRelatedWork W1458605085 @default.
- W2891540726 hasRelatedWork W1556569004 @default.
- W2891540726 hasRelatedWork W1881916318 @default.
- W2891540726 hasRelatedWork W1906797484 @default.
- W2891540726 hasRelatedWork W1976645060 @default.
- W2891540726 hasRelatedWork W1979258206 @default.
- W2891540726 hasRelatedWork W2008477217 @default.
- W2891540726 hasRelatedWork W2013549024 @default.
- W2891540726 hasRelatedWork W2016477646 @default.
- W2891540726 hasRelatedWork W2232015701 @default.
- W2891540726 hasRelatedWork W2318865848 @default.
- W2891540726 hasRelatedWork W2380526447 @default.
- W2891540726 hasRelatedWork W2399964092 @default.
- W2891540726 hasRelatedWork W2592548075 @default.
- W2891540726 hasRelatedWork W2592709341 @default.
- W2891540726 hasRelatedWork W2804270044 @default.
- W2891540726 hasRelatedWork W2950682586 @default.
- W2891540726 hasRelatedWork W2963972691 @default.
- W2891540726 hasRelatedWork W3047022407 @default.
- W2891540726 hasRelatedWork W3133925773 @default.