Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891548105> ?p ?o ?g. }
- W2891548105 endingPage "1463" @default.
- W2891548105 startingPage "1444" @default.
- W2891548105 abstract "The structural health monitoring relies on the continuous observation of a dynamic system over time to identify its actual condition, detect abnormal behaviors, and predict future states. The regular changes in environmental factors have been reported as one of the main challenges for the application of structural health monitoring systems. These influences in the structural responses are in general nonlinear, affecting the damage-sensitive features in the most varied forms. The usual process to remove these normal changes is referred to as data normalization. In that regard, principal component analysis is probably the most studied algorithm in structural health monitoring, having numerous versions to learn strong nonlinear normal changes. However, in most cases, not all variability is properly accounted for via the existing nonlinear principal component analysis approaches, resulting in poor damage detection and quantification performances. In this article, a new paradigm based on deep principal component analysis, rooted in the deep learning field, is presented to overcome these limitations. This approach extracts the most salient underlying feature distributions by stacking multiple feedforward neural networks trained to learn an identity mapping of the input variables, where the network inputs are reproduced into the outputs. Similar to the traditional nonlinear principal component analysis–based approach, our approach identifies a nonlinear output-only model of an undamaged structure by comprising modal features into an internal bottleneck layer, which implicitly represents the independent environmental factors. The proposed technique is validated through the application on a progressively damaged prestressed concrete bridge and a three-span suspension bridge. The experimental results demonstrate that capturing the most slight nonlinear variations in the data can lead to improved data normalization and, consequently, better damage detection and quantification performances." @default.
- W2891548105 created "2018-09-27" @default.
- W2891548105 creator A5002404336 @default.
- W2891548105 creator A5012669201 @default.
- W2891548105 creator A5055979739 @default.
- W2891548105 creator A5063092770 @default.
- W2891548105 creator A5088559095 @default.
- W2891548105 creator A5089949316 @default.
- W2891548105 date "2018-09-17" @default.
- W2891548105 modified "2023-10-07" @default.
- W2891548105 title "Deep principal component analysis: An enhanced approach for structural damage identification" @default.
- W2891548105 cites W1173228497 @default.
- W2891548105 cites W1503531755 @default.
- W2891548105 cites W182324478 @default.
- W2891548105 cites W1897892887 @default.
- W2891548105 cites W1967274766 @default.
- W2891548105 cites W1973513707 @default.
- W2891548105 cites W1977220071 @default.
- W2891548105 cites W1979968252 @default.
- W2891548105 cites W1984045521 @default.
- W2891548105 cites W1984121966 @default.
- W2891548105 cites W2017508396 @default.
- W2891548105 cites W2020692786 @default.
- W2891548105 cites W2021609073 @default.
- W2891548105 cites W2023920199 @default.
- W2891548105 cites W2027566931 @default.
- W2891548105 cites W2028885777 @default.
- W2891548105 cites W2029066866 @default.
- W2891548105 cites W2029625572 @default.
- W2891548105 cites W2035039243 @default.
- W2891548105 cites W2035652711 @default.
- W2891548105 cites W2051837837 @default.
- W2891548105 cites W2071639791 @default.
- W2891548105 cites W2076063813 @default.
- W2891548105 cites W2078305503 @default.
- W2891548105 cites W2078626246 @default.
- W2891548105 cites W2085590890 @default.
- W2891548105 cites W2094460095 @default.
- W2891548105 cites W2100495367 @default.
- W2891548105 cites W2103028374 @default.
- W2891548105 cites W2103739184 @default.
- W2891548105 cites W2120356561 @default.
- W2891548105 cites W2122538988 @default.
- W2891548105 cites W2140984045 @default.
- W2891548105 cites W2147926935 @default.
- W2891548105 cites W2150869884 @default.
- W2891548105 cites W2283853326 @default.
- W2891548105 cites W2474202004 @default.
- W2891548105 cites W2537252005 @default.
- W2891548105 cites W28412257 @default.
- W2891548105 cites W2993383518 @default.
- W2891548105 cites W4231109964 @default.
- W2891548105 doi "https://doi.org/10.1177/1475921718799070" @default.
- W2891548105 hasPublicationYear "2018" @default.
- W2891548105 type Work @default.
- W2891548105 sameAs 2891548105 @default.
- W2891548105 citedByCount "35" @default.
- W2891548105 countsByYear W28915481052019 @default.
- W2891548105 countsByYear W28915481052020 @default.
- W2891548105 countsByYear W28915481052021 @default.
- W2891548105 countsByYear W28915481052022 @default.
- W2891548105 countsByYear W28915481052023 @default.
- W2891548105 crossrefType "journal-article" @default.
- W2891548105 hasAuthorship W2891548105A5002404336 @default.
- W2891548105 hasAuthorship W2891548105A5012669201 @default.
- W2891548105 hasAuthorship W2891548105A5055979739 @default.
- W2891548105 hasAuthorship W2891548105A5063092770 @default.
- W2891548105 hasAuthorship W2891548105A5088559095 @default.
- W2891548105 hasAuthorship W2891548105A5089949316 @default.
- W2891548105 hasConcept C100776233 @default.
- W2891548105 hasConcept C116834253 @default.
- W2891548105 hasConcept C121332964 @default.
- W2891548105 hasConcept C124101348 @default.
- W2891548105 hasConcept C126322002 @default.
- W2891548105 hasConcept C127413603 @default.
- W2891548105 hasConcept C136886441 @default.
- W2891548105 hasConcept C138885662 @default.
- W2891548105 hasConcept C144024400 @default.
- W2891548105 hasConcept C149635348 @default.
- W2891548105 hasConcept C153180895 @default.
- W2891548105 hasConcept C154945302 @default.
- W2891548105 hasConcept C158622935 @default.
- W2891548105 hasConcept C168167062 @default.
- W2891548105 hasConcept C19165224 @default.
- W2891548105 hasConcept C27438332 @default.
- W2891548105 hasConcept C2776247918 @default.
- W2891548105 hasConcept C2776401178 @default.
- W2891548105 hasConcept C2780513914 @default.
- W2891548105 hasConcept C2780719617 @default.
- W2891548105 hasConcept C33347731 @default.
- W2891548105 hasConcept C41008148 @default.
- W2891548105 hasConcept C41895202 @default.
- W2891548105 hasConcept C46141821 @default.
- W2891548105 hasConcept C59822182 @default.
- W2891548105 hasConcept C62520636 @default.
- W2891548105 hasConcept C66938386 @default.
- W2891548105 hasConcept C71924100 @default.
- W2891548105 hasConcept C86803240 @default.