Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891552274> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2891552274 endingPage "373" @default.
- W2891552274 startingPage "373" @default.
- W2891552274 abstract "We propose a framework for three-dimensional (3D) object recognition and classification in very low illumination environments using convolutional neural networks (CNNs). 3D images are reconstructed using 3D integral imaging (InIm) with conventional visible spectrum image sensors. After imaging the low light scene using 3D InIm, the 3D reconstructed image has a higher signal-to-noise ratio than a single 2D image, which is a result of 3D InIm being optimal in the maximum likelihood sense for read-noise dominant images. Once 3D reconstruction has been performed, the 3D image is denoised and regions of interest are extracted to detect 3D objects in a scene. The extracted regions are then inputted into a CNN, which was trained under low illumination conditions using 3D InIm reconstructed images, to perform object recognition. To the best of our knowledge, this is the first report of utilizing 3D InIm and convolutional neural networks for 3D training and 3D object classification under very low illumination conditions." @default.
- W2891552274 created "2018-09-27" @default.
- W2891552274 creator A5066255394 @default.
- W2891552274 creator A5090265161 @default.
- W2891552274 date "2018-09-14" @default.
- W2891552274 modified "2023-09-26" @default.
- W2891552274 title "Learning in the dark: 3D integral imaging object recognition in very low illumination conditions using convolutional neural networks" @default.
- W2891552274 cites W1983538861 @default.
- W2891552274 cites W1992825118 @default.
- W2891552274 cites W1998710444 @default.
- W2891552274 cites W1999215120 @default.
- W2891552274 cites W1999231460 @default.
- W2891552274 cites W2027001303 @default.
- W2891552274 cites W2132849836 @default.
- W2891552274 cites W2144279996 @default.
- W2891552274 cites W2144354855 @default.
- W2891552274 cites W2164532725 @default.
- W2891552274 cites W2169899245 @default.
- W2891552274 cites W2201421020 @default.
- W2891552274 cites W2281891263 @default.
- W2891552274 cites W2333137852 @default.
- W2891552274 cites W2573866540 @default.
- W2891552274 cites W2744100481 @default.
- W2891552274 doi "https://doi.org/10.1364/osac.1.000373" @default.
- W2891552274 hasPublicationYear "2018" @default.
- W2891552274 type Work @default.
- W2891552274 sameAs 2891552274 @default.
- W2891552274 citedByCount "15" @default.
- W2891552274 countsByYear W28915522742019 @default.
- W2891552274 countsByYear W28915522742020 @default.
- W2891552274 countsByYear W28915522742021 @default.
- W2891552274 countsByYear W28915522742022 @default.
- W2891552274 countsByYear W28915522742023 @default.
- W2891552274 crossrefType "journal-article" @default.
- W2891552274 hasAuthorship W2891552274A5066255394 @default.
- W2891552274 hasAuthorship W2891552274A5090265161 @default.
- W2891552274 hasBestOaLocation W28915522741 @default.
- W2891552274 hasConcept C115961682 @default.
- W2891552274 hasConcept C153180895 @default.
- W2891552274 hasConcept C154945302 @default.
- W2891552274 hasConcept C183708386 @default.
- W2891552274 hasConcept C2781238097 @default.
- W2891552274 hasConcept C31972630 @default.
- W2891552274 hasConcept C41008148 @default.
- W2891552274 hasConcept C64876066 @default.
- W2891552274 hasConcept C81363708 @default.
- W2891552274 hasConceptScore W2891552274C115961682 @default.
- W2891552274 hasConceptScore W2891552274C153180895 @default.
- W2891552274 hasConceptScore W2891552274C154945302 @default.
- W2891552274 hasConceptScore W2891552274C183708386 @default.
- W2891552274 hasConceptScore W2891552274C2781238097 @default.
- W2891552274 hasConceptScore W2891552274C31972630 @default.
- W2891552274 hasConceptScore W2891552274C41008148 @default.
- W2891552274 hasConceptScore W2891552274C64876066 @default.
- W2891552274 hasConceptScore W2891552274C81363708 @default.
- W2891552274 hasFunder F4320338313 @default.
- W2891552274 hasIssue "2" @default.
- W2891552274 hasLocation W28915522741 @default.
- W2891552274 hasOpenAccess W2891552274 @default.
- W2891552274 hasPrimaryLocation W28915522741 @default.
- W2891552274 hasRelatedWork W1528044252 @default.
- W2891552274 hasRelatedWork W1531683208 @default.
- W2891552274 hasRelatedWork W2200925278 @default.
- W2891552274 hasRelatedWork W2328068029 @default.
- W2891552274 hasRelatedWork W2330829846 @default.
- W2891552274 hasRelatedWork W2350353705 @default.
- W2891552274 hasRelatedWork W2363840281 @default.
- W2891552274 hasRelatedWork W2372904789 @default.
- W2891552274 hasRelatedWork W2536452361 @default.
- W2891552274 hasRelatedWork W2707663905 @default.
- W2891552274 hasVolume "1" @default.
- W2891552274 isParatext "false" @default.
- W2891552274 isRetracted "false" @default.
- W2891552274 magId "2891552274" @default.
- W2891552274 workType "article" @default.