Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891554587> ?p ?o ?g. }
- W2891554587 endingPage "107" @default.
- W2891554587 startingPage "95" @default.
- W2891554587 abstract "The relation between the water discharge (Q) and suspended sediment concentration (SSC) of the River Ramganga at Bareilly, Uttar Pradesh, in the Himalayas, has been modeled using Artificial Neural Networks (ANNs). The current study validates the practical capability and usefulness of this tool for simulating complex nonlinear, real world, river system processes in the Himalayan scenario. The modeling approach is based on the time series data collected from January to December (2008–2010) for Q and SSC. Three ANNs (T1-T3) with different network configurations have been developed and trained using the Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. Networks were optimized using the enumeration technique, and, finally, the best network is used to predict the SSC values for the year 2011. The values thus obtained through the ANN model are compared with the observed values of SSC. The coefficient of determination (R2), for the optimal network was found to be 0.99. The study not only provides insight into ANN modeling in the Himalayan river scenario, but it also focuses on the importance of understanding a river basin and the factors that affect the SSC, before attempting to model it. Despite the temporal variations in the study area, it is possible to model and successfully predict the SSC values with very simplistic ANN models." @default.
- W2891554587 created "2018-09-27" @default.
- W2891554587 creator A5041044554 @default.
- W2891554587 creator A5046886208 @default.
- W2891554587 creator A5068525466 @default.
- W2891554587 creator A5071960985 @default.
- W2891554587 date "2019-04-01" @default.
- W2891554587 modified "2023-10-16" @default.
- W2891554587 title "Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India" @default.
- W2891554587 cites W1972765166 @default.
- W2891554587 cites W1975183682 @default.
- W2891554587 cites W1980597395 @default.
- W2891554587 cites W1997052296 @default.
- W2891554587 cites W1998273223 @default.
- W2891554587 cites W1998442441 @default.
- W2891554587 cites W2008661373 @default.
- W2891554587 cites W2011412119 @default.
- W2891554587 cites W2012027190 @default.
- W2891554587 cites W2012803277 @default.
- W2891554587 cites W2017198208 @default.
- W2891554587 cites W2022754289 @default.
- W2891554587 cites W2025590911 @default.
- W2891554587 cites W2026644358 @default.
- W2891554587 cites W2029724692 @default.
- W2891554587 cites W2031292142 @default.
- W2891554587 cites W2034342537 @default.
- W2891554587 cites W2034553015 @default.
- W2891554587 cites W2034908427 @default.
- W2891554587 cites W2052947666 @default.
- W2891554587 cites W2053715443 @default.
- W2891554587 cites W2054359427 @default.
- W2891554587 cites W2055312490 @default.
- W2891554587 cites W2063756720 @default.
- W2891554587 cites W2073596094 @default.
- W2891554587 cites W2076063813 @default.
- W2891554587 cites W2081823205 @default.
- W2891554587 cites W2088704524 @default.
- W2891554587 cites W2088840159 @default.
- W2891554587 cites W2094312930 @default.
- W2891554587 cites W2097290909 @default.
- W2891554587 cites W2100855757 @default.
- W2891554587 cites W2106693625 @default.
- W2891554587 cites W2114824684 @default.
- W2891554587 cites W2149501975 @default.
- W2891554587 cites W2151571212 @default.
- W2891554587 cites W2155623606 @default.
- W2891554587 cites W2159940720 @default.
- W2891554587 cites W2167170348 @default.
- W2891554587 cites W2224088501 @default.
- W2891554587 cites W2256767201 @default.
- W2891554587 cites W2307337384 @default.
- W2891554587 cites W2332911590 @default.
- W2891554587 cites W2420617128 @default.
- W2891554587 cites W2469821678 @default.
- W2891554587 cites W2538405192 @default.
- W2891554587 cites W2574379231 @default.
- W2891554587 cites W2592234943 @default.
- W2891554587 cites W2593209621 @default.
- W2891554587 cites W2603743676 @default.
- W2891554587 cites W2608783221 @default.
- W2891554587 cites W2774045685 @default.
- W2891554587 cites W2775534631 @default.
- W2891554587 cites W2805379725 @default.
- W2891554587 cites W3017323153 @default.
- W2891554587 cites W3018770027 @default.
- W2891554587 cites W4230568062 @default.
- W2891554587 doi "https://doi.org/10.1016/j.ijsrc.2018.09.001" @default.
- W2891554587 hasPublicationYear "2019" @default.
- W2891554587 type Work @default.
- W2891554587 sameAs 2891554587 @default.
- W2891554587 citedByCount "61" @default.
- W2891554587 countsByYear W28915545872018 @default.
- W2891554587 countsByYear W28915545872019 @default.
- W2891554587 countsByYear W28915545872020 @default.
- W2891554587 countsByYear W28915545872021 @default.
- W2891554587 countsByYear W28915545872022 @default.
- W2891554587 countsByYear W28915545872023 @default.
- W2891554587 crossrefType "journal-article" @default.
- W2891554587 hasAuthorship W2891554587A5041044554 @default.
- W2891554587 hasAuthorship W2891554587A5046886208 @default.
- W2891554587 hasAuthorship W2891554587A5068525466 @default.
- W2891554587 hasAuthorship W2891554587A5071960985 @default.
- W2891554587 hasConcept C109007969 @default.
- W2891554587 hasConcept C111919701 @default.
- W2891554587 hasConcept C114793014 @default.
- W2891554587 hasConcept C121332964 @default.
- W2891554587 hasConcept C126645576 @default.
- W2891554587 hasConcept C127313418 @default.
- W2891554587 hasConcept C144024400 @default.
- W2891554587 hasConcept C154945302 @default.
- W2891554587 hasConcept C158622935 @default.
- W2891554587 hasConcept C187320778 @default.
- W2891554587 hasConcept C205649164 @default.
- W2891554587 hasConcept C2780365114 @default.
- W2891554587 hasConcept C2816523 @default.
- W2891554587 hasConcept C3018581295 @default.
- W2891554587 hasConcept C39432304 @default.
- W2891554587 hasConcept C41008148 @default.