Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891559904> ?p ?o ?g. }
- W2891559904 abstract "The problem of finding connected components in undirected graphs has been well studied. It is an essential pre-processing step to many graph computations, and a fundamental task in graph analytics applications, such as social network analysis, web graph mining and image processing. Recently, it has been a major area of interest within the field of large graph processing. However, much of the research has focused on solving the problem using High Performance Computers (HPC). In large distributed systems, the MapReduce framework dominates the processing of big data, and has been used for finding connected components in big graphs although iterative processing is not directly supported in MapReduce. Current big data processing systems have developed into supporting iterative processing and providing additional features other than MapReduce. Moreover, current connected component algorithms in large distributed processing system only use the traditional approach to choosing the component identifier based on the lexical ordering of the node ID value. This study investigates how to enhance the performance of finding connected components algorithm for large graph in distributed processing system. It uses the approach to considering the graph degree property in choosing the component identifier, reviewing how this can affect the efficiency of the algorithm. In the design of our proposed algorithm features provided by current new processing systems such as moving the computation more toward the data partition in Spark are integrated. This study thus review how this has affected the performance. The degree approach to choosing the component identifier is experimentally tested using different algorithms. The study then applies the proposed approach on the fastest existing algorithm, and experimentally compare the performance of the connected component algorithm using both the original and our modified algorithm. The results show that using the degree approach has played a vital role in the evolution of the graph size during the process, leading to a faster convergence and significant performance improvement when case vertex pruning is applied in the algorithms. Furthermore, they demonstrate that in many cases optimising the design of the algorithm with local pre-processing of the data has resulted in performance enhancement." @default.
- W2891559904 created "2018-09-27" @default.
- W2891559904 creator A5054933947 @default.
- W2891559904 date "2018-02-01" @default.
- W2891559904 modified "2023-09-27" @default.
- W2891559904 title "Optimisation techniques for finding connected components in large graphs using GraphX" @default.
- W2891559904 cites W1481050426 @default.
- W2891559904 cites W1495663756 @default.
- W2891559904 cites W1505837402 @default.
- W2891559904 cites W1527539186 @default.
- W2891559904 cites W1736726159 @default.
- W2891559904 cites W1967695253 @default.
- W2891559904 cites W1967838552 @default.
- W2891559904 cites W1977343608 @default.
- W2891559904 cites W1978303644 @default.
- W2891559904 cites W19838944 @default.
- W2891559904 cites W1984775058 @default.
- W2891559904 cites W1993219230 @default.
- W2891559904 cites W2003167710 @default.
- W2891559904 cites W2013246060 @default.
- W2891559904 cites W2020302654 @default.
- W2891559904 cites W2030421664 @default.
- W2891559904 cites W2033258621 @default.
- W2891559904 cites W2034192887 @default.
- W2891559904 cites W2040263621 @default.
- W2891559904 cites W2045271686 @default.
- W2891559904 cites W2053061798 @default.
- W2891559904 cites W2061910932 @default.
- W2891559904 cites W2063364984 @default.
- W2891559904 cites W2080098453 @default.
- W2891559904 cites W2083541728 @default.
- W2891559904 cites W2095178814 @default.
- W2891559904 cites W2095444363 @default.
- W2891559904 cites W2112765151 @default.
- W2891559904 cites W2119565742 @default.
- W2891559904 cites W2120925698 @default.
- W2891559904 cites W2121810937 @default.
- W2891559904 cites W2123505848 @default.
- W2891559904 cites W2125301708 @default.
- W2891559904 cites W2131715540 @default.
- W2891559904 cites W2131975293 @default.
- W2891559904 cites W2145965489 @default.
- W2891559904 cites W2161077919 @default.
- W2891559904 cites W2167640678 @default.
- W2891559904 cites W2167927436 @default.
- W2891559904 cites W2171329192 @default.
- W2891559904 cites W2171668176 @default.
- W2891559904 cites W2173213060 @default.
- W2891559904 cites W2189465200 @default.
- W2891559904 cites W2214884049 @default.
- W2891559904 cites W2219764230 @default.
- W2891559904 cites W2256517685 @default.
- W2891559904 cites W2259576664 @default.
- W2891559904 cites W2265090272 @default.
- W2891559904 cites W2291321158 @default.
- W2891559904 cites W2294515932 @default.
- W2891559904 cites W2331708311 @default.
- W2891559904 cites W2405341999 @default.
- W2891559904 cites W2434302234 @default.
- W2891559904 cites W2464314898 @default.
- W2891559904 cites W2505011268 @default.
- W2891559904 cites W2516734083 @default.
- W2891559904 cites W2534179372 @default.
- W2891559904 cites W2542459869 @default.
- W2891559904 cites W2587138254 @default.
- W2891559904 cites W2589749558 @default.
- W2891559904 cites W2590926957 @default.
- W2891559904 cites W2611196248 @default.
- W2891559904 cites W26932585 @default.
- W2891559904 cites W3100284210 @default.
- W2891559904 cites W653151999 @default.
- W2891559904 hasPublicationYear "2018" @default.
- W2891559904 type Work @default.
- W2891559904 sameAs 2891559904 @default.
- W2891559904 citedByCount "0" @default.
- W2891559904 crossrefType "dissertation" @default.
- W2891559904 hasAuthorship W2891559904A5054933947 @default.
- W2891559904 hasConcept C120314980 @default.
- W2891559904 hasConcept C121332964 @default.
- W2891559904 hasConcept C124101348 @default.
- W2891559904 hasConcept C132525143 @default.
- W2891559904 hasConcept C138827492 @default.
- W2891559904 hasConcept C154504017 @default.
- W2891559904 hasConcept C154945302 @default.
- W2891559904 hasConcept C168167062 @default.
- W2891559904 hasConcept C193435613 @default.
- W2891559904 hasConcept C199360897 @default.
- W2891559904 hasConcept C2779172887 @default.
- W2891559904 hasConcept C41008148 @default.
- W2891559904 hasConcept C48903430 @default.
- W2891559904 hasConcept C75684735 @default.
- W2891559904 hasConcept C77088390 @default.
- W2891559904 hasConcept C80444323 @default.
- W2891559904 hasConcept C97355855 @default.
- W2891559904 hasConceptScore W2891559904C120314980 @default.
- W2891559904 hasConceptScore W2891559904C121332964 @default.
- W2891559904 hasConceptScore W2891559904C124101348 @default.
- W2891559904 hasConceptScore W2891559904C132525143 @default.
- W2891559904 hasConceptScore W2891559904C138827492 @default.
- W2891559904 hasConceptScore W2891559904C154504017 @default.