Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891566762> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2891566762 abstract "Data extraction, which falls under the area of Natural Language Processing (UNL), finds specific data from unstructured data. This research paves the way to introduce a unique technique on data extraction – providing the user with exactly what is asked without any mimicry of unsolicited data. The proposal sets logical and symmetrical relation between the search criteria and operational data. Since the data is unstructured and volume can be relatively high, we have emphasized highly on putting the data under categories – defined and used by the researchers for further exploitation of data. Universal Networking Language (UNL) is efficiently used to compare data and merge. A new approach of machine learning is presented herein that essentially augments efficiency of Natural Language Computing (NLC) and Cognitive Computing (CC). This proposed approach uses UNL relationship and successful test data shows much improved results and efficient generalization. Existing machine learning approaches are widely used on numeric data which are producing expected results but one key contention is the limitation of data type that can be handled. Current models fail to properly train on the semantics, logical consistency; many natural language properties are either ignored or prove too much of a task. Consequently, the approach presented herein this paper carries further positive points in producing meaningful and worthwhile result. Moreover, complex data that are consisted of alphanumeric data, sequence and resulting criteria can be executed correctly." @default.
- W2891566762 created "2018-09-27" @default.
- W2891566762 creator A5008569306 @default.
- W2891566762 creator A5016730902 @default.
- W2891566762 creator A5046296055 @default.
- W2891566762 creator A5071208302 @default.
- W2891566762 date "2017-09-01" @default.
- W2891566762 modified "2023-09-27" @default.
- W2891566762 title "Data Extraction from Natural Language using Universal Networking Language" @default.
- W2891566762 cites W1538804767 @default.
- W2891566762 cites W1993977866 @default.
- W2891566762 cites W2058043539 @default.
- W2891566762 cites W2081388731 @default.
- W2891566762 cites W2097606805 @default.
- W2891566762 cites W2128774237 @default.
- W2891566762 cites W2159807474 @default.
- W2891566762 cites W2168947731 @default.
- W2891566762 cites W2251958415 @default.
- W2891566762 doi "https://doi.org/10.1109/ctceec.2017.8454920" @default.
- W2891566762 hasPublicationYear "2017" @default.
- W2891566762 type Work @default.
- W2891566762 sameAs 2891566762 @default.
- W2891566762 citedByCount "1" @default.
- W2891566762 countsByYear W28915667622019 @default.
- W2891566762 crossrefType "proceedings-article" @default.
- W2891566762 hasAuthorship W2891566762A5008569306 @default.
- W2891566762 hasAuthorship W2891566762A5016730902 @default.
- W2891566762 hasAuthorship W2891566762A5046296055 @default.
- W2891566762 hasAuthorship W2891566762A5071208302 @default.
- W2891566762 hasConcept C154945302 @default.
- W2891566762 hasConcept C17744445 @default.
- W2891566762 hasConcept C195324797 @default.
- W2891566762 hasConcept C195807954 @default.
- W2891566762 hasConcept C197129107 @default.
- W2891566762 hasConcept C199539241 @default.
- W2891566762 hasConcept C204321447 @default.
- W2891566762 hasConcept C23123220 @default.
- W2891566762 hasConcept C2777466982 @default.
- W2891566762 hasConcept C2779439875 @default.
- W2891566762 hasConcept C2779473830 @default.
- W2891566762 hasConcept C41008148 @default.
- W2891566762 hasConceptScore W2891566762C154945302 @default.
- W2891566762 hasConceptScore W2891566762C17744445 @default.
- W2891566762 hasConceptScore W2891566762C195324797 @default.
- W2891566762 hasConceptScore W2891566762C195807954 @default.
- W2891566762 hasConceptScore W2891566762C197129107 @default.
- W2891566762 hasConceptScore W2891566762C199539241 @default.
- W2891566762 hasConceptScore W2891566762C204321447 @default.
- W2891566762 hasConceptScore W2891566762C23123220 @default.
- W2891566762 hasConceptScore W2891566762C2777466982 @default.
- W2891566762 hasConceptScore W2891566762C2779439875 @default.
- W2891566762 hasConceptScore W2891566762C2779473830 @default.
- W2891566762 hasConceptScore W2891566762C41008148 @default.
- W2891566762 hasLocation W28915667621 @default.
- W2891566762 hasOpenAccess W2891566762 @default.
- W2891566762 hasPrimaryLocation W28915667621 @default.
- W2891566762 hasRelatedWork W2064512087 @default.
- W2891566762 hasRelatedWork W2088104063 @default.
- W2891566762 hasRelatedWork W2142412033 @default.
- W2891566762 hasRelatedWork W2147204201 @default.
- W2891566762 hasRelatedWork W2161141770 @default.
- W2891566762 hasRelatedWork W2188459063 @default.
- W2891566762 hasRelatedWork W2560745907 @default.
- W2891566762 hasRelatedWork W2588886771 @default.
- W2891566762 hasRelatedWork W2591179784 @default.
- W2891566762 hasRelatedWork W2746257843 @default.
- W2891566762 hasRelatedWork W2790150576 @default.
- W2891566762 hasRelatedWork W2803349759 @default.
- W2891566762 hasRelatedWork W2876408656 @default.
- W2891566762 hasRelatedWork W2954348898 @default.
- W2891566762 hasRelatedWork W2996553029 @default.
- W2891566762 hasRelatedWork W3045239463 @default.
- W2891566762 hasRelatedWork W3083378409 @default.
- W2891566762 hasRelatedWork W3094220570 @default.
- W2891566762 hasRelatedWork W3193630611 @default.
- W2891566762 hasRelatedWork W3210775301 @default.
- W2891566762 isParatext "false" @default.
- W2891566762 isRetracted "false" @default.
- W2891566762 magId "2891566762" @default.
- W2891566762 workType "article" @default.