Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891568487> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2891568487 abstract "Freight car target detection plays an important role in railway traffic safety, which typically depends on artificial observation or conventional machine learning, with insufficient accuracy and high demand for an observer's physical strength and image quality. Motivated by the recent advances of the convolutional neural network in object detection, this study investigates how deep neural networks can be applied in freight car target detection to better solve the aforementioned problems. We propose a novel two-training method for freight car target detection; the method includes general training and special training. In addition, online hard example mining and deformable convolutional network are introduced to select hard examples and extract better features for the special training stage to improve the problem of tiny target detection in poor images obtained from freight car target detection. The proposed methods are verified using experimental results based on three aspects, i.e. indexes, visualization, and speed. High accuracy can be achieved with good recall and acceptable speed for freight car target detection applications. Finally, we illustrate the utility of using such a model to test high robustness for changes in image quality and other target detection tasks with slight modification." @default.
- W2891568487 created "2018-09-27" @default.
- W2891568487 creator A5027441215 @default.
- W2891568487 creator A5051655313 @default.
- W2891568487 creator A5056462605 @default.
- W2891568487 creator A5064711465 @default.
- W2891568487 creator A5088574399 @default.
- W2891568487 date "2018-09-06" @default.
- W2891568487 modified "2023-09-29" @default.
- W2891568487 title "Freight car target detection in a complex background based on convolutional neural networks" @default.
- W2891568487 cites W1165939480 @default.
- W2891568487 cites W2069747077 @default.
- W2891568487 cites W2088049833 @default.
- W2891568487 cites W2089947415 @default.
- W2891568487 cites W2129440600 @default.
- W2891568487 cites W2145202303 @default.
- W2891568487 cites W2176950688 @default.
- W2891568487 cites W2279907273 @default.
- W2891568487 cites W2538776421 @default.
- W2891568487 cites W2919115771 @default.
- W2891568487 cites W639708223 @default.
- W2891568487 doi "https://doi.org/10.1177/0954409718793464" @default.
- W2891568487 hasPublicationYear "2018" @default.
- W2891568487 type Work @default.
- W2891568487 sameAs 2891568487 @default.
- W2891568487 citedByCount "5" @default.
- W2891568487 countsByYear W28915684872020 @default.
- W2891568487 countsByYear W28915684872021 @default.
- W2891568487 countsByYear W28915684872022 @default.
- W2891568487 countsByYear W28915684872023 @default.
- W2891568487 crossrefType "journal-article" @default.
- W2891568487 hasAuthorship W2891568487A5027441215 @default.
- W2891568487 hasAuthorship W2891568487A5051655313 @default.
- W2891568487 hasAuthorship W2891568487A5056462605 @default.
- W2891568487 hasAuthorship W2891568487A5064711465 @default.
- W2891568487 hasAuthorship W2891568487A5088574399 @default.
- W2891568487 hasConcept C104317684 @default.
- W2891568487 hasConcept C108583219 @default.
- W2891568487 hasConcept C111472728 @default.
- W2891568487 hasConcept C119857082 @default.
- W2891568487 hasConcept C138885662 @default.
- W2891568487 hasConcept C153180895 @default.
- W2891568487 hasConcept C154945302 @default.
- W2891568487 hasConcept C185592680 @default.
- W2891568487 hasConcept C2776151529 @default.
- W2891568487 hasConcept C2779530757 @default.
- W2891568487 hasConcept C36464697 @default.
- W2891568487 hasConcept C41008148 @default.
- W2891568487 hasConcept C50644808 @default.
- W2891568487 hasConcept C55493867 @default.
- W2891568487 hasConcept C63479239 @default.
- W2891568487 hasConcept C81363708 @default.
- W2891568487 hasConcept C81669768 @default.
- W2891568487 hasConceptScore W2891568487C104317684 @default.
- W2891568487 hasConceptScore W2891568487C108583219 @default.
- W2891568487 hasConceptScore W2891568487C111472728 @default.
- W2891568487 hasConceptScore W2891568487C119857082 @default.
- W2891568487 hasConceptScore W2891568487C138885662 @default.
- W2891568487 hasConceptScore W2891568487C153180895 @default.
- W2891568487 hasConceptScore W2891568487C154945302 @default.
- W2891568487 hasConceptScore W2891568487C185592680 @default.
- W2891568487 hasConceptScore W2891568487C2776151529 @default.
- W2891568487 hasConceptScore W2891568487C2779530757 @default.
- W2891568487 hasConceptScore W2891568487C36464697 @default.
- W2891568487 hasConceptScore W2891568487C41008148 @default.
- W2891568487 hasConceptScore W2891568487C50644808 @default.
- W2891568487 hasConceptScore W2891568487C55493867 @default.
- W2891568487 hasConceptScore W2891568487C63479239 @default.
- W2891568487 hasConceptScore W2891568487C81363708 @default.
- W2891568487 hasConceptScore W2891568487C81669768 @default.
- W2891568487 hasFunder F4320321001 @default.
- W2891568487 hasLocation W28915684871 @default.
- W2891568487 hasOpenAccess W2891568487 @default.
- W2891568487 hasPrimaryLocation W28915684871 @default.
- W2891568487 hasRelatedWork W1445015017 @default.
- W2891568487 hasRelatedWork W2175746458 @default.
- W2891568487 hasRelatedWork W2415731916 @default.
- W2891568487 hasRelatedWork W2613736958 @default.
- W2891568487 hasRelatedWork W2765889516 @default.
- W2891568487 hasRelatedWork W2767097019 @default.
- W2891568487 hasRelatedWork W2920938200 @default.
- W2891568487 hasRelatedWork W2955667634 @default.
- W2891568487 hasRelatedWork W3208266890 @default.
- W2891568487 hasRelatedWork W4206674386 @default.
- W2891568487 isParatext "false" @default.
- W2891568487 isRetracted "false" @default.
- W2891568487 magId "2891568487" @default.
- W2891568487 workType "article" @default.