Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891569179> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2891569179 endingPage "73" @default.
- W2891569179 startingPage "65" @default.
- W2891569179 abstract "Ultrasound imaging can be used to identify a variety of lung pathologies, including pneumonia, pneumothorax, pleural effusion, and acute respiratory distress syndrome (ARDS). Ultrasound lung images of sufficient quality are relatively easy to acquire, but can be difficult to interpret as the relevant features are mostly non-structural and require expert interpretation. In this work, we developed a convolutional neural network (CNN) algorithm to identify five key lung features linked to pathological lung conditions: B-lines, merged B-lines, lack of lung sliding, consolidation and pleural effusion. The algorithm was trained using short ultrasound videos of in vivo swine models with carefully controlled lung conditions. Key lung features were annotated by expert radiologists and snonographers. Pneumothorax (absence of lung sliding) was detected with an Inception V3 CNN using simulated M-mode images. A single shot detection (SSD) framework was used to detect the remaining features. Our results indicate that deep learning algorithms can successfully detect lung abnormalities in ultrasound imagery. Computer-assisted ultrasound interpretation can place expert-level diagnostic accuracy in the hands of low-resource health care providers." @default.
- W2891569179 created "2018-09-27" @default.
- W2891569179 creator A5008264686 @default.
- W2891569179 creator A5030134598 @default.
- W2891569179 creator A5043283568 @default.
- W2891569179 creator A5046142889 @default.
- W2891569179 creator A5046711995 @default.
- W2891569179 creator A5054946020 @default.
- W2891569179 creator A5075510036 @default.
- W2891569179 creator A5078632208 @default.
- W2891569179 creator A5085282937 @default.
- W2891569179 date "2018-01-01" @default.
- W2891569179 modified "2023-10-12" @default.
- W2891569179 title "Ultrasound-Based Detection of Lung Abnormalities Using Single Shot Detection Convolutional Neural Networks" @default.
- W2891569179 cites W2050772041 @default.
- W2891569179 cites W2061715187 @default.
- W2891569179 cites W2102605133 @default.
- W2891569179 cites W2117171866 @default.
- W2891569179 cites W2139564155 @default.
- W2891569179 cites W2150835094 @default.
- W2891569179 cites W2183341477 @default.
- W2891569179 cites W2332732566 @default.
- W2891569179 cites W2475079525 @default.
- W2891569179 cites W2548515727 @default.
- W2891569179 cites W2549299049 @default.
- W2891569179 cites W2557728737 @default.
- W2891569179 cites W2592929672 @default.
- W2891569179 cites W2789895747 @default.
- W2891569179 cites W2963037989 @default.
- W2891569179 cites W3106250896 @default.
- W2891569179 doi "https://doi.org/10.1007/978-3-030-01045-4_8" @default.
- W2891569179 hasPublicationYear "2018" @default.
- W2891569179 type Work @default.
- W2891569179 sameAs 2891569179 @default.
- W2891569179 citedByCount "30" @default.
- W2891569179 countsByYear W28915691792019 @default.
- W2891569179 countsByYear W28915691792020 @default.
- W2891569179 countsByYear W28915691792021 @default.
- W2891569179 countsByYear W28915691792022 @default.
- W2891569179 countsByYear W28915691792023 @default.
- W2891569179 crossrefType "book-chapter" @default.
- W2891569179 hasAuthorship W2891569179A5008264686 @default.
- W2891569179 hasAuthorship W2891569179A5030134598 @default.
- W2891569179 hasAuthorship W2891569179A5043283568 @default.
- W2891569179 hasAuthorship W2891569179A5046142889 @default.
- W2891569179 hasAuthorship W2891569179A5046711995 @default.
- W2891569179 hasAuthorship W2891569179A5054946020 @default.
- W2891569179 hasAuthorship W2891569179A5075510036 @default.
- W2891569179 hasAuthorship W2891569179A5078632208 @default.
- W2891569179 hasAuthorship W2891569179A5085282937 @default.
- W2891569179 hasConcept C126322002 @default.
- W2891569179 hasConcept C126838900 @default.
- W2891569179 hasConcept C143753070 @default.
- W2891569179 hasConcept C153180895 @default.
- W2891569179 hasConcept C154945302 @default.
- W2891569179 hasConcept C2777714996 @default.
- W2891569179 hasConcept C2778329176 @default.
- W2891569179 hasConcept C2779634585 @default.
- W2891569179 hasConcept C41008148 @default.
- W2891569179 hasConcept C71924100 @default.
- W2891569179 hasConcept C81363708 @default.
- W2891569179 hasConceptScore W2891569179C126322002 @default.
- W2891569179 hasConceptScore W2891569179C126838900 @default.
- W2891569179 hasConceptScore W2891569179C143753070 @default.
- W2891569179 hasConceptScore W2891569179C153180895 @default.
- W2891569179 hasConceptScore W2891569179C154945302 @default.
- W2891569179 hasConceptScore W2891569179C2777714996 @default.
- W2891569179 hasConceptScore W2891569179C2778329176 @default.
- W2891569179 hasConceptScore W2891569179C2779634585 @default.
- W2891569179 hasConceptScore W2891569179C41008148 @default.
- W2891569179 hasConceptScore W2891569179C71924100 @default.
- W2891569179 hasConceptScore W2891569179C81363708 @default.
- W2891569179 hasLocation W28915691791 @default.
- W2891569179 hasOpenAccess W2891569179 @default.
- W2891569179 hasPrimaryLocation W28915691791 @default.
- W2891569179 hasRelatedWork W2004099630 @default.
- W2891569179 hasRelatedWork W2029967375 @default.
- W2891569179 hasRelatedWork W2044731570 @default.
- W2891569179 hasRelatedWork W2093503957 @default.
- W2891569179 hasRelatedWork W2354750055 @default.
- W2891569179 hasRelatedWork W2365285128 @default.
- W2891569179 hasRelatedWork W2384678654 @default.
- W2891569179 hasRelatedWork W2391187666 @default.
- W2891569179 hasRelatedWork W2607195831 @default.
- W2891569179 hasRelatedWork W2916332193 @default.
- W2891569179 isParatext "false" @default.
- W2891569179 isRetracted "false" @default.
- W2891569179 magId "2891569179" @default.
- W2891569179 workType "book-chapter" @default.