Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891569681> ?p ?o ?g. }
- W2891569681 endingPage "13" @default.
- W2891569681 startingPage "1" @default.
- W2891569681 abstract "Abstract Service Quality (SQ) in Public Transport (PT) has been a crucial aspect to improve for years because of its strong influence on user satisfaction and its capacity to attract new passengers. Different techniques have been applied for analysing SQ and Structural Equation Modelling (SEM) is one of the most widely used due to its ability to address different kinds of variables and to model a whole phenomenon occurring at one time. Nevertheless, its confirmative nature requires previous knowledge, a hurdle that can be overcome by applying Bayesian Networks (BN) as a technique that learns directly from data without pre-assumptions. The aim of this paper is to apply a novel methodological approach in the field of SQ, based on a two-step process, which combines the techniques of BN and SEM, to model SQ in the Metropolitan Light Rail Transit (LRT) Service of Seville (Spain). In other words, in this paper, the proposed methodological approach has been applied to extract and confirm, directly from data and without necessity of assumptions, the possible relationships among the LRT service characteristics and how they are related with passengers’ overall SQ perception. For this purpose, firstly, a BN was automatically learnt from the data and allowed to establish relationships between SQ dimensions describing the service. SEM was then used to check the SQ model and the relationships between the dimensions extracted from the BN. The model fit parameters of SEM and its consistency with the real life expected scenario supported and validated the SQ model designed in this study. Furthermore, the different relationships among dimensions extracted from BN were analysed and support the usefulness and potential of this methodological process that could lead to the development and confirmation of new theories and models in any field of knowledge based on data and expert supervision." @default.
- W2891569681 created "2018-09-27" @default.
- W2891569681 creator A5028060973 @default.
- W2891569681 creator A5052927871 @default.
- W2891569681 creator A5052968889 @default.
- W2891569681 date "2018-12-01" @default.
- W2891569681 modified "2023-10-03" @default.
- W2891569681 title "Bayesian networks and structural equation modelling to develop service quality models: Metro of Seville case study" @default.
- W2891569681 cites W1584259234 @default.
- W2891569681 cites W1903521732 @default.
- W2891569681 cites W1965449646 @default.
- W2891569681 cites W1969112416 @default.
- W2891569681 cites W1977855198 @default.
- W2891569681 cites W1980482122 @default.
- W2891569681 cites W1985048625 @default.
- W2891569681 cites W1994263489 @default.
- W2891569681 cites W1994415176 @default.
- W2891569681 cites W2010349953 @default.
- W2891569681 cites W2020527831 @default.
- W2891569681 cites W2022952927 @default.
- W2891569681 cites W2025334717 @default.
- W2891569681 cites W2028778474 @default.
- W2891569681 cites W2047196794 @default.
- W2891569681 cites W2056292725 @default.
- W2891569681 cites W2059927669 @default.
- W2891569681 cites W2060222447 @default.
- W2891569681 cites W2080833703 @default.
- W2891569681 cites W2087837204 @default.
- W2891569681 cites W2090563475 @default.
- W2891569681 cites W2094013842 @default.
- W2891569681 cites W2099816914 @default.
- W2891569681 cites W2100644522 @default.
- W2891569681 cites W2109641321 @default.
- W2891569681 cites W2130783497 @default.
- W2891569681 cites W2167249443 @default.
- W2891569681 cites W219170917 @default.
- W2891569681 cites W2291808583 @default.
- W2891569681 cites W2414470245 @default.
- W2891569681 cites W2470608735 @default.
- W2891569681 cites W2476753218 @default.
- W2891569681 cites W2483217698 @default.
- W2891569681 cites W2593238575 @default.
- W2891569681 cites W4240969601 @default.
- W2891569681 doi "https://doi.org/10.1016/j.tra.2018.08.012" @default.
- W2891569681 hasPublicationYear "2018" @default.
- W2891569681 type Work @default.
- W2891569681 sameAs 2891569681 @default.
- W2891569681 citedByCount "28" @default.
- W2891569681 countsByYear W28915696812019 @default.
- W2891569681 countsByYear W28915696812020 @default.
- W2891569681 countsByYear W28915696812021 @default.
- W2891569681 countsByYear W28915696812022 @default.
- W2891569681 countsByYear W28915696812023 @default.
- W2891569681 crossrefType "journal-article" @default.
- W2891569681 hasAuthorship W2891569681A5028060973 @default.
- W2891569681 hasAuthorship W2891569681A5052927871 @default.
- W2891569681 hasAuthorship W2891569681A5052968889 @default.
- W2891569681 hasConcept C107673813 @default.
- W2891569681 hasConcept C111472728 @default.
- W2891569681 hasConcept C119857082 @default.
- W2891569681 hasConcept C138885662 @default.
- W2891569681 hasConcept C140781008 @default.
- W2891569681 hasConcept C144133560 @default.
- W2891569681 hasConcept C149782125 @default.
- W2891569681 hasConcept C154945302 @default.
- W2891569681 hasConcept C162853370 @default.
- W2891569681 hasConcept C2779530757 @default.
- W2891569681 hasConcept C2780378061 @default.
- W2891569681 hasConcept C33724603 @default.
- W2891569681 hasConcept C33923547 @default.
- W2891569681 hasConcept C41008148 @default.
- W2891569681 hasConcept C71104824 @default.
- W2891569681 hasConceptScore W2891569681C107673813 @default.
- W2891569681 hasConceptScore W2891569681C111472728 @default.
- W2891569681 hasConceptScore W2891569681C119857082 @default.
- W2891569681 hasConceptScore W2891569681C138885662 @default.
- W2891569681 hasConceptScore W2891569681C140781008 @default.
- W2891569681 hasConceptScore W2891569681C144133560 @default.
- W2891569681 hasConceptScore W2891569681C149782125 @default.
- W2891569681 hasConceptScore W2891569681C154945302 @default.
- W2891569681 hasConceptScore W2891569681C162853370 @default.
- W2891569681 hasConceptScore W2891569681C2779530757 @default.
- W2891569681 hasConceptScore W2891569681C2780378061 @default.
- W2891569681 hasConceptScore W2891569681C33724603 @default.
- W2891569681 hasConceptScore W2891569681C33923547 @default.
- W2891569681 hasConceptScore W2891569681C41008148 @default.
- W2891569681 hasConceptScore W2891569681C71104824 @default.
- W2891569681 hasFunder F4320335322 @default.
- W2891569681 hasLocation W28915696811 @default.
- W2891569681 hasOpenAccess W2891569681 @default.
- W2891569681 hasPrimaryLocation W28915696811 @default.
- W2891569681 hasRelatedWork W1562636474 @default.
- W2891569681 hasRelatedWork W1578239112 @default.
- W2891569681 hasRelatedWork W1801574842 @default.
- W2891569681 hasRelatedWork W2070177654 @default.
- W2891569681 hasRelatedWork W2080833703 @default.
- W2891569681 hasRelatedWork W2370397667 @default.
- W2891569681 hasRelatedWork W2373159561 @default.