Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891590611> ?p ?o ?g. }
- W2891590611 abstract "Polynomial chaos methods have been extensively used to analyze systems in uncertainty quantification. Furthermore, several approaches exist to determine a low-dimensional approximation (or sparse approximation) for some quantity of interest in a model, where just a few orthogonal basis polynomials are required. We consider linear dynamical systems consisting of ordinary differential equations with random variables. The aim of this paper is to explore methods for producing low-dimensional approximations of the quantity of interest further. We investigate two numerical techniques to compute a low-dimensional representation, which both fit the approximation to a set of samples in the time domain. On the one hand, a frequency domain analysis of a stochastic Galerkin system yields the selection of the basis polynomials. It follows a linear least squares problem. On the other hand, a sparse minimization yields the choice of the basis polynomials by information from the time domain only. An orthogonal matching pursuit produces an approximate solution of the minimization problem. We compare the two approaches using a test example from a mechanical application." @default.
- W2891590611 created "2018-09-27" @default.
- W2891590611 creator A5022413371 @default.
- W2891590611 creator A5084145417 @default.
- W2891590611 date "2018-01-01" @default.
- W2891590611 modified "2023-09-25" @default.
- W2891590611 title "TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS" @default.
- W2891590611 cites W1551480811 @default.
- W2891590611 cites W1574558736 @default.
- W2891590611 cites W1583515176 @default.
- W2891590611 cites W1965093639 @default.
- W2891590611 cites W1984320340 @default.
- W2891590611 cites W1995504856 @default.
- W2891590611 cites W2003208754 @default.
- W2891590611 cites W2018159038 @default.
- W2891590611 cites W2035665246 @default.
- W2891590611 cites W2045226249 @default.
- W2891590611 cites W2045355467 @default.
- W2891590611 cites W2053339424 @default.
- W2891590611 cites W2056558085 @default.
- W2891590611 cites W2059198297 @default.
- W2891590611 cites W2079374105 @default.
- W2891590611 cites W2081023708 @default.
- W2891590611 cites W2087659852 @default.
- W2891590611 cites W2103244625 @default.
- W2891590611 cites W2128659236 @default.
- W2891590611 cites W2131959872 @default.
- W2891590611 cites W2132622200 @default.
- W2891590611 cites W2140856955 @default.
- W2891590611 cites W2141454789 @default.
- W2891590611 cites W2146476360 @default.
- W2891590611 cites W2150062983 @default.
- W2891590611 cites W2163985430 @default.
- W2891590611 cites W2164452299 @default.
- W2891590611 cites W2171630320 @default.
- W2891590611 cites W2280506408 @default.
- W2891590611 cites W2303654018 @default.
- W2891590611 cites W2343196643 @default.
- W2891590611 cites W2560517525 @default.
- W2891590611 cites W2607044057 @default.
- W2891590611 cites W2644635209 @default.
- W2891590611 cites W2743025172 @default.
- W2891590611 cites W2962852715 @default.
- W2891590611 cites W2964109560 @default.
- W2891590611 doi "https://doi.org/10.1615/int.j.uncertaintyquantification.2018026902" @default.
- W2891590611 hasPublicationYear "2018" @default.
- W2891590611 type Work @default.
- W2891590611 sameAs 2891590611 @default.
- W2891590611 citedByCount "0" @default.
- W2891590611 crossrefType "journal-article" @default.
- W2891590611 hasAuthorship W2891590611A5022413371 @default.
- W2891590611 hasAuthorship W2891590611A5084145417 @default.
- W2891590611 hasBestOaLocation W28915906112 @default.
- W2891590611 hasConcept C105795698 @default.
- W2891590611 hasConcept C10628310 @default.
- W2891590611 hasConcept C11413529 @default.
- W2891590611 hasConcept C121332964 @default.
- W2891590611 hasConcept C124066611 @default.
- W2891590611 hasConcept C12426560 @default.
- W2891590611 hasConcept C124851039 @default.
- W2891590611 hasConcept C126255220 @default.
- W2891590611 hasConcept C134306372 @default.
- W2891590611 hasConcept C156872377 @default.
- W2891590611 hasConcept C158622935 @default.
- W2891590611 hasConcept C186899397 @default.
- W2891590611 hasConcept C187064257 @default.
- W2891590611 hasConcept C19118579 @default.
- W2891590611 hasConcept C19499675 @default.
- W2891590611 hasConcept C197656079 @default.
- W2891590611 hasConcept C2524010 @default.
- W2891590611 hasConcept C28826006 @default.
- W2891590611 hasConcept C32230216 @default.
- W2891590611 hasConcept C33923547 @default.
- W2891590611 hasConcept C51544822 @default.
- W2891590611 hasConcept C5917680 @default.
- W2891590611 hasConcept C62520636 @default.
- W2891590611 hasConcept C78045399 @default.
- W2891590611 hasConceptScore W2891590611C105795698 @default.
- W2891590611 hasConceptScore W2891590611C10628310 @default.
- W2891590611 hasConceptScore W2891590611C11413529 @default.
- W2891590611 hasConceptScore W2891590611C121332964 @default.
- W2891590611 hasConceptScore W2891590611C124066611 @default.
- W2891590611 hasConceptScore W2891590611C12426560 @default.
- W2891590611 hasConceptScore W2891590611C124851039 @default.
- W2891590611 hasConceptScore W2891590611C126255220 @default.
- W2891590611 hasConceptScore W2891590611C134306372 @default.
- W2891590611 hasConceptScore W2891590611C156872377 @default.
- W2891590611 hasConceptScore W2891590611C158622935 @default.
- W2891590611 hasConceptScore W2891590611C186899397 @default.
- W2891590611 hasConceptScore W2891590611C187064257 @default.
- W2891590611 hasConceptScore W2891590611C19118579 @default.
- W2891590611 hasConceptScore W2891590611C19499675 @default.
- W2891590611 hasConceptScore W2891590611C197656079 @default.
- W2891590611 hasConceptScore W2891590611C2524010 @default.
- W2891590611 hasConceptScore W2891590611C28826006 @default.
- W2891590611 hasConceptScore W2891590611C32230216 @default.
- W2891590611 hasConceptScore W2891590611C33923547 @default.
- W2891590611 hasConceptScore W2891590611C51544822 @default.
- W2891590611 hasConceptScore W2891590611C5917680 @default.
- W2891590611 hasConceptScore W2891590611C62520636 @default.