Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891595725> ?p ?o ?g. }
- W2891595725 endingPage "e11936" @default.
- W2891595725 startingPage "e11936" @default.
- W2891595725 abstract "State-of-the-art classifiers based on convolutional neural networks (CNNs) were shown to classify images of skin cancer on par with dermatologists and could enable lifesaving and fast diagnoses, even outside the hospital via installation of apps on mobile devices. To our knowledge, at present there is no review of the current work in this research area.This study presents the first systematic review of the state-of-the-art research on classifying skin lesions with CNNs. We limit our review to skin lesion classifiers. In particular, methods that apply a CNN only for segmentation or for the classification of dermoscopic patterns are not considered here. Furthermore, this study discusses why the comparability of the presented procedures is very difficult and which challenges must be addressed in the future.We searched the Google Scholar, PubMed, Medline, ScienceDirect, and Web of Science databases for systematic reviews and original research articles published in English. Only papers that reported sufficient scientific proceedings are included in this review.We found 13 papers that classified skin lesions using CNNs. In principle, classification methods can be differentiated according to three principles. Approaches that use a CNN already trained by means of another large dataset and then optimize its parameters to the classification of skin lesions are the most common ones used and they display the best performance with the currently available limited datasets.CNNs display a high performance as state-of-the-art skin lesion classifiers. Unfortunately, it is difficult to compare different classification methods because some approaches use nonpublic datasets for training and/or testing, thereby making reproducibility difficult. Future publications should use publicly available benchmarks and fully disclose methods used for training to allow comparability." @default.
- W2891595725 created "2018-09-27" @default.
- W2891595725 creator A5007887862 @default.
- W2891595725 creator A5034365278 @default.
- W2891595725 creator A5038031102 @default.
- W2891595725 creator A5039930487 @default.
- W2891595725 creator A5056685282 @default.
- W2891595725 creator A5057226132 @default.
- W2891595725 creator A5077469980 @default.
- W2891595725 creator A5080896246 @default.
- W2891595725 creator A5084073390 @default.
- W2891595725 creator A5086466437 @default.
- W2891595725 date "2018-10-17" @default.
- W2891595725 modified "2023-10-16" @default.
- W2891595725 title "Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review" @default.
- W2891595725 cites W1947353268 @default.
- W2891595725 cites W1973590825 @default.
- W2891595725 cites W2005088335 @default.
- W2891595725 cites W2049209034 @default.
- W2891595725 cites W2120509399 @default.
- W2891595725 cites W2140710261 @default.
- W2891595725 cites W2164273268 @default.
- W2891595725 cites W2167147175 @default.
- W2891595725 cites W2180648740 @default.
- W2891595725 cites W2194775991 @default.
- W2891595725 cites W2426398770 @default.
- W2891595725 cites W2426942631 @default.
- W2891595725 cites W2460774276 @default.
- W2891595725 cites W2519210008 @default.
- W2891595725 cites W2537189671 @default.
- W2891595725 cites W2567713898 @default.
- W2891595725 cites W2581082771 @default.
- W2891595725 cites W2591669284 @default.
- W2891595725 cites W2618530766 @default.
- W2891595725 cites W2757940437 @default.
- W2891595725 cites W2786147899 @default.
- W2891595725 cites W2788686457 @default.
- W2891595725 cites W2806487945 @default.
- W2891595725 cites W2806853752 @default.
- W2891595725 cites W2919115771 @default.
- W2891595725 cites W3102796228 @default.
- W2891595725 doi "https://doi.org/10.2196/11936" @default.
- W2891595725 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6231861" @default.
- W2891595725 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30333097" @default.
- W2891595725 hasPublicationYear "2018" @default.
- W2891595725 type Work @default.
- W2891595725 sameAs 2891595725 @default.
- W2891595725 citedByCount "265" @default.
- W2891595725 countsByYear W28915957252019 @default.
- W2891595725 countsByYear W28915957252020 @default.
- W2891595725 countsByYear W28915957252021 @default.
- W2891595725 countsByYear W28915957252022 @default.
- W2891595725 countsByYear W28915957252023 @default.
- W2891595725 crossrefType "journal-article" @default.
- W2891595725 hasAuthorship W2891595725A5007887862 @default.
- W2891595725 hasAuthorship W2891595725A5034365278 @default.
- W2891595725 hasAuthorship W2891595725A5038031102 @default.
- W2891595725 hasAuthorship W2891595725A5039930487 @default.
- W2891595725 hasAuthorship W2891595725A5056685282 @default.
- W2891595725 hasAuthorship W2891595725A5057226132 @default.
- W2891595725 hasAuthorship W2891595725A5077469980 @default.
- W2891595725 hasAuthorship W2891595725A5080896246 @default.
- W2891595725 hasAuthorship W2891595725A5084073390 @default.
- W2891595725 hasAuthorship W2891595725A5086466437 @default.
- W2891595725 hasBestOaLocation W28915957251 @default.
- W2891595725 hasConcept C114614502 @default.
- W2891595725 hasConcept C119857082 @default.
- W2891595725 hasConcept C121608353 @default.
- W2891595725 hasConcept C126322002 @default.
- W2891595725 hasConcept C142724271 @default.
- W2891595725 hasConcept C153180895 @default.
- W2891595725 hasConcept C154945302 @default.
- W2891595725 hasConcept C197947376 @default.
- W2891595725 hasConcept C2777789703 @default.
- W2891595725 hasConcept C33923547 @default.
- W2891595725 hasConcept C41008148 @default.
- W2891595725 hasConcept C534262118 @default.
- W2891595725 hasConcept C71924100 @default.
- W2891595725 hasConcept C81363708 @default.
- W2891595725 hasConcept C89600930 @default.
- W2891595725 hasConceptScore W2891595725C114614502 @default.
- W2891595725 hasConceptScore W2891595725C119857082 @default.
- W2891595725 hasConceptScore W2891595725C121608353 @default.
- W2891595725 hasConceptScore W2891595725C126322002 @default.
- W2891595725 hasConceptScore W2891595725C142724271 @default.
- W2891595725 hasConceptScore W2891595725C153180895 @default.
- W2891595725 hasConceptScore W2891595725C154945302 @default.
- W2891595725 hasConceptScore W2891595725C197947376 @default.
- W2891595725 hasConceptScore W2891595725C2777789703 @default.
- W2891595725 hasConceptScore W2891595725C33923547 @default.
- W2891595725 hasConceptScore W2891595725C41008148 @default.
- W2891595725 hasConceptScore W2891595725C534262118 @default.
- W2891595725 hasConceptScore W2891595725C71924100 @default.
- W2891595725 hasConceptScore W2891595725C81363708 @default.
- W2891595725 hasConceptScore W2891595725C89600930 @default.
- W2891595725 hasIssue "10" @default.
- W2891595725 hasLocation W28915957251 @default.
- W2891595725 hasLocation W28915957252 @default.