Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891601809> ?p ?o ?g. }
- W2891601809 endingPage "328" @default.
- W2891601809 startingPage "298" @default.
- W2891601809 abstract "Computational electrodynamics (CED), the numerical solution of Maxwell's equations, plays an incredibly important role in several problems in science and engineering. High accuracy solutions are desired, and the discontinuous Galerkin (DG) method is one of the better ways of delivering high accuracy in numerical CED. Maxwell's equations have a pair of involution constraints for which mimetic schemes that globally satisfy the constraints at a discrete level are highly desirable. Balsara and Käppeli (2019) presented a von Neumann stability analysis of globally constraint-preserving DG schemes for CED up to fourth order. That paper was focused on developing the theory and documenting the superior dissipation and dispersion of DGTD schemes in media with constant permittivity and permeability. In this paper we present working DGTD schemes for CED that go up to fifth order of accuracy and analyze their performance when permittivity and permeability vary strongly in space. Our DGTD schemes achieve constraint preservation by collocating the electric displacement and magnetic induction as well as their higher order modes in the faces of the mesh. Our first finding is that at fourth and higher orders of accuracy, one has to evolve some zone-centered modes in addition to the face-centered modes. It is well-known that the limiting step in DG schemes causes a reduction of the optimal accuracy of the scheme; though the schemes still retain their formal order of accuracy with WENO-type limiters. In this paper, we document simulations where permittivity and permeability vary by almost an order of magnitude without requiring any limiting of the DG scheme. This very favorable second finding ensures that DGTD schemes retain optimal accuracy even in the presence of large spatial variations in permittivity and permeability. We also study the conservation of electromagnetic energy in these problems. Our third finding shows that the electromagnetic energy is conserved very well even when permittivity and permeability vary strongly in space; as long as the conductivity is zero." @default.
- W2891601809 created "2018-09-27" @default.
- W2891601809 creator A5062556000 @default.
- W2891601809 creator A5075312811 @default.
- W2891601809 creator A5077912016 @default.
- W2891601809 date "2019-10-01" @default.
- W2891601809 modified "2023-10-16" @default.
- W2891601809 title "Globally constraint-preserving FR/DG scheme for Maxwell's equations at all orders" @default.
- W2891601809 cites W1041011369 @default.
- W2891601809 cites W1681011433 @default.
- W2891601809 cites W1771547885 @default.
- W2891601809 cites W1889499721 @default.
- W2891601809 cites W1971908644 @default.
- W2891601809 cites W1973481688 @default.
- W2891601809 cites W1976883414 @default.
- W2891601809 cites W1981651014 @default.
- W2891601809 cites W1992057274 @default.
- W2891601809 cites W2002083525 @default.
- W2891601809 cites W2005665126 @default.
- W2891601809 cites W2008001739 @default.
- W2891601809 cites W2015715930 @default.
- W2891601809 cites W2017488448 @default.
- W2891601809 cites W2023198396 @default.
- W2891601809 cites W2026400582 @default.
- W2891601809 cites W2057583810 @default.
- W2891601809 cites W2057897500 @default.
- W2891601809 cites W2063900474 @default.
- W2891601809 cites W2068107702 @default.
- W2891601809 cites W2068387216 @default.
- W2891601809 cites W2069423318 @default.
- W2891601809 cites W2071382578 @default.
- W2891601809 cites W2074800504 @default.
- W2891601809 cites W2078290517 @default.
- W2891601809 cites W2082433079 @default.
- W2891601809 cites W2083659289 @default.
- W2891601809 cites W2091582690 @default.
- W2891601809 cites W2092976896 @default.
- W2891601809 cites W2094818681 @default.
- W2891601809 cites W2101095633 @default.
- W2891601809 cites W2102337582 @default.
- W2891601809 cites W2112548197 @default.
- W2891601809 cites W2142063750 @default.
- W2891601809 cites W2152735244 @default.
- W2891601809 cites W2152841193 @default.
- W2891601809 cites W2158006240 @default.
- W2891601809 cites W2158427036 @default.
- W2891601809 cites W2160795898 @default.
- W2891601809 cites W2171677227 @default.
- W2891601809 cites W2308910487 @default.
- W2891601809 cites W2464997744 @default.
- W2891601809 cites W2585571645 @default.
- W2891601809 cites W2611208587 @default.
- W2891601809 cites W2737855253 @default.
- W2891601809 cites W2798146058 @default.
- W2891601809 cites W2964208182 @default.
- W2891601809 cites W3010292040 @default.
- W2891601809 cites W4245459577 @default.
- W2891601809 cites W4253114495 @default.
- W2891601809 cites W912249945 @default.
- W2891601809 doi "https://doi.org/10.1016/j.jcp.2019.06.003" @default.
- W2891601809 hasPublicationYear "2019" @default.
- W2891601809 type Work @default.
- W2891601809 sameAs 2891601809 @default.
- W2891601809 citedByCount "17" @default.
- W2891601809 countsByYear W28916018092020 @default.
- W2891601809 countsByYear W28916018092021 @default.
- W2891601809 countsByYear W28916018092022 @default.
- W2891601809 countsByYear W28916018092023 @default.
- W2891601809 crossrefType "journal-article" @default.
- W2891601809 hasAuthorship W2891601809A5062556000 @default.
- W2891601809 hasAuthorship W2891601809A5075312811 @default.
- W2891601809 hasAuthorship W2891601809A5077912016 @default.
- W2891601809 hasBestOaLocation W28916018091 @default.
- W2891601809 hasConcept C121332964 @default.
- W2891601809 hasConcept C126255220 @default.
- W2891601809 hasConcept C133386390 @default.
- W2891601809 hasConcept C134306372 @default.
- W2891601809 hasConcept C135628077 @default.
- W2891601809 hasConcept C168651791 @default.
- W2891601809 hasConcept C176321772 @default.
- W2891601809 hasConcept C28826006 @default.
- W2891601809 hasConcept C33923547 @default.
- W2891601809 hasConcept C39177556 @default.
- W2891601809 hasConcept C41008148 @default.
- W2891601809 hasConcept C48753275 @default.
- W2891601809 hasConcept C49040817 @default.
- W2891601809 hasConcept C57470404 @default.
- W2891601809 hasConcept C59282198 @default.
- W2891601809 hasConcept C60799052 @default.
- W2891601809 hasConcept C62520636 @default.
- W2891601809 hasConcept C92244383 @default.
- W2891601809 hasConcept C97355855 @default.
- W2891601809 hasConceptScore W2891601809C121332964 @default.
- W2891601809 hasConceptScore W2891601809C126255220 @default.
- W2891601809 hasConceptScore W2891601809C133386390 @default.
- W2891601809 hasConceptScore W2891601809C134306372 @default.
- W2891601809 hasConceptScore W2891601809C135628077 @default.
- W2891601809 hasConceptScore W2891601809C168651791 @default.