Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891604924> ?p ?o ?g. }
- W2891604924 abstract "Conditional Density Estimation (CDE) models deal with estimating conditional distributions. The conditions imposed on the distribution are the inputs of the model. CDE is a challenging task as there is a fundamental trade-off between model complexity, representational capacity and overfitting. In this work, we propose to extend the model's input with latent variables and use Gaussian processes (GP) to map this augmented input onto samples from the conditional distribution. Our Bayesian approach allows for the modeling of small datasets, but we also provide the machinery for it to be applied to big data using stochastic variational inference. Our approach can be used to model densities even in sparse data regions, and allows for sharing learned structure between conditions. We illustrate the effectiveness and wide-reaching applicability of our model on a variety of real-world problems, such as spatio-temporal density estimation of taxi drop-offs, non-Gaussian noise modeling, and few-shot learning on omniglot images." @default.
- W2891604924 created "2018-09-27" @default.
- W2891604924 creator A5001763022 @default.
- W2891604924 creator A5023796924 @default.
- W2891604924 creator A5085437275 @default.
- W2891604924 creator A5090767252 @default.
- W2891604924 date "2018-10-30" @default.
- W2891604924 modified "2023-09-27" @default.
- W2891604924 title "Gaussian Process Conditional Density Estimation" @default.
- W2891604924 cites W1579853615 @default.
- W2891604924 cites W1641973859 @default.
- W2891604924 cites W1777124189 @default.
- W2891604924 cites W2121529189 @default.
- W2891604924 cites W2133294540 @default.
- W2891604924 cites W2146611938 @default.
- W2891604924 cites W215707797 @default.
- W2891604924 cites W2166851633 @default.
- W2891604924 cites W2188365844 @default.
- W2891604924 cites W2737610083 @default.
- W2891604924 cites W2784067649 @default.
- W2891604924 cites W2951004968 @default.
- W2891604924 cites W2953116488 @default.
- W2891604924 cites W2963877283 @default.
- W2891604924 cites W2964186509 @default.
- W2891604924 cites W66306528 @default.
- W2891604924 hasPublicationYear "2018" @default.
- W2891604924 type Work @default.
- W2891604924 sameAs 2891604924 @default.
- W2891604924 citedByCount "0" @default.
- W2891604924 crossrefType "posted-content" @default.
- W2891604924 hasAuthorship W2891604924A5001763022 @default.
- W2891604924 hasAuthorship W2891604924A5023796924 @default.
- W2891604924 hasAuthorship W2891604924A5085437275 @default.
- W2891604924 hasAuthorship W2891604924A5090767252 @default.
- W2891604924 hasConcept C105795698 @default.
- W2891604924 hasConcept C107673813 @default.
- W2891604924 hasConcept C11413529 @default.
- W2891604924 hasConcept C119857082 @default.
- W2891604924 hasConcept C121332964 @default.
- W2891604924 hasConcept C124101348 @default.
- W2891604924 hasConcept C153180895 @default.
- W2891604924 hasConcept C154945302 @default.
- W2891604924 hasConcept C160234255 @default.
- W2891604924 hasConcept C163716315 @default.
- W2891604924 hasConcept C185429906 @default.
- W2891604924 hasConcept C189508267 @default.
- W2891604924 hasConcept C22019652 @default.
- W2891604924 hasConcept C2776214188 @default.
- W2891604924 hasConcept C33923547 @default.
- W2891604924 hasConcept C41008148 @default.
- W2891604924 hasConcept C43555835 @default.
- W2891604924 hasConcept C50644808 @default.
- W2891604924 hasConcept C61326573 @default.
- W2891604924 hasConcept C62520636 @default.
- W2891604924 hasConceptScore W2891604924C105795698 @default.
- W2891604924 hasConceptScore W2891604924C107673813 @default.
- W2891604924 hasConceptScore W2891604924C11413529 @default.
- W2891604924 hasConceptScore W2891604924C119857082 @default.
- W2891604924 hasConceptScore W2891604924C121332964 @default.
- W2891604924 hasConceptScore W2891604924C124101348 @default.
- W2891604924 hasConceptScore W2891604924C153180895 @default.
- W2891604924 hasConceptScore W2891604924C154945302 @default.
- W2891604924 hasConceptScore W2891604924C160234255 @default.
- W2891604924 hasConceptScore W2891604924C163716315 @default.
- W2891604924 hasConceptScore W2891604924C185429906 @default.
- W2891604924 hasConceptScore W2891604924C189508267 @default.
- W2891604924 hasConceptScore W2891604924C22019652 @default.
- W2891604924 hasConceptScore W2891604924C2776214188 @default.
- W2891604924 hasConceptScore W2891604924C33923547 @default.
- W2891604924 hasConceptScore W2891604924C41008148 @default.
- W2891604924 hasConceptScore W2891604924C43555835 @default.
- W2891604924 hasConceptScore W2891604924C50644808 @default.
- W2891604924 hasConceptScore W2891604924C61326573 @default.
- W2891604924 hasConceptScore W2891604924C62520636 @default.
- W2891604924 hasLocation W28916049241 @default.
- W2891604924 hasOpenAccess W2891604924 @default.
- W2891604924 hasPrimaryLocation W28916049241 @default.
- W2891604924 hasRelatedWork W1713680391 @default.
- W2891604924 hasRelatedWork W1866129879 @default.
- W2891604924 hasRelatedWork W1933486966 @default.
- W2891604924 hasRelatedWork W2344925077 @default.
- W2891604924 hasRelatedWork W2555699918 @default.
- W2891604924 hasRelatedWork W2595607793 @default.
- W2891604924 hasRelatedWork W2807156663 @default.
- W2891604924 hasRelatedWork W2949971467 @default.
- W2891604924 hasRelatedWork W2951336346 @default.
- W2891604924 hasRelatedWork W2953303000 @default.
- W2891604924 hasRelatedWork W2963020974 @default.
- W2891604924 hasRelatedWork W2963192657 @default.
- W2891604924 hasRelatedWork W2964578922 @default.
- W2891604924 hasRelatedWork W3026126175 @default.
- W2891604924 hasRelatedWork W3033508645 @default.
- W2891604924 hasRelatedWork W3129524796 @default.
- W2891604924 hasRelatedWork W3136736766 @default.
- W2891604924 hasRelatedWork W3151172924 @default.
- W2891604924 hasRelatedWork W3166364057 @default.
- W2891604924 hasRelatedWork W3089197827 @default.
- W2891604924 isParatext "false" @default.
- W2891604924 isRetracted "false" @default.
- W2891604924 magId "2891604924" @default.