Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891605032> ?p ?o ?g. }
- W2891605032 endingPage "52307" @default.
- W2891605032 startingPage "52298" @default.
- W2891605032 abstract "Real-time process monitoring is crucial to improve the productivity, process safety, and product quality. In this paper, a novel fault detection and diagnosis technique based on a principal polynomial analysis (PPA) is proposed. PPA is a nonlinear modeling technique, which describes the data using a set of flexible principal polynomial components. Compared with the PCA-based methods, PPA is more effective in capturing the intrinsic nonlinear geometry structure of the process data. Moreover, compared with other nonlinear methods, such as kernel-based and neural-networks-based methods, PPA has the appealing features of straightforward out-of-sample extension, volume-preservation, and invertibility. In addition, two new types of fault detection and diagnosis statistics are derived. The effectiveness of the proposed PPA-based monitoring method was verified through its applications to a nonlinear numerical example and an industrial benchmark process. The application results have demonstrated that the proposed method has superior fault detection and diagnosis performance than the conventional PCA-based and kernel PCA-based methods." @default.
- W2891605032 created "2018-09-27" @default.
- W2891605032 creator A5009488253 @default.
- W2891605032 creator A5027269981 @default.
- W2891605032 creator A5034630360 @default.
- W2891605032 date "2018-01-01" @default.
- W2891605032 modified "2023-10-01" @default.
- W2891605032 title "Principal Polynomial Analysis for Fault Detection and Diagnosis of Industrial Processes" @default.
- W2891605032 cites W1966863755 @default.
- W2891605032 cites W1970537494 @default.
- W2891605032 cites W1973076992 @default.
- W2891605032 cites W1978994389 @default.
- W2891605032 cites W1989746184 @default.
- W2891605032 cites W1990384678 @default.
- W2891605032 cites W1992844383 @default.
- W2891605032 cites W1994101233 @default.
- W2891605032 cites W1994505190 @default.
- W2891605032 cites W2001141328 @default.
- W2891605032 cites W2004186751 @default.
- W2891605032 cites W2053186076 @default.
- W2891605032 cites W2070135905 @default.
- W2891605032 cites W2070372194 @default.
- W2891605032 cites W2089468765 @default.
- W2891605032 cites W2097308346 @default.
- W2891605032 cites W2097331024 @default.
- W2891605032 cites W2122538988 @default.
- W2891605032 cites W2124523634 @default.
- W2891605032 cites W2130086376 @default.
- W2891605032 cites W2169347809 @default.
- W2891605032 cites W2278400335 @default.
- W2891605032 cites W2322097696 @default.
- W2891605032 cites W2508552526 @default.
- W2891605032 cites W2608089442 @default.
- W2891605032 cites W2625725670 @default.
- W2891605032 cites W2759373267 @default.
- W2891605032 cites W2761414589 @default.
- W2891605032 cites W2773374035 @default.
- W2891605032 cites W4213367101 @default.
- W2891605032 doi "https://doi.org/10.1109/access.2018.2870140" @default.
- W2891605032 hasPublicationYear "2018" @default.
- W2891605032 type Work @default.
- W2891605032 sameAs 2891605032 @default.
- W2891605032 citedByCount "12" @default.
- W2891605032 countsByYear W28916050322019 @default.
- W2891605032 countsByYear W28916050322020 @default.
- W2891605032 countsByYear W28916050322021 @default.
- W2891605032 countsByYear W28916050322022 @default.
- W2891605032 countsByYear W28916050322023 @default.
- W2891605032 crossrefType "journal-article" @default.
- W2891605032 hasAuthorship W2891605032A5009488253 @default.
- W2891605032 hasAuthorship W2891605032A5027269981 @default.
- W2891605032 hasAuthorship W2891605032A5034630360 @default.
- W2891605032 hasBestOaLocation W28916050321 @default.
- W2891605032 hasConcept C111919701 @default.
- W2891605032 hasConcept C11413529 @default.
- W2891605032 hasConcept C114614502 @default.
- W2891605032 hasConcept C121332964 @default.
- W2891605032 hasConcept C122280245 @default.
- W2891605032 hasConcept C12267149 @default.
- W2891605032 hasConcept C124101348 @default.
- W2891605032 hasConcept C127313418 @default.
- W2891605032 hasConcept C13280743 @default.
- W2891605032 hasConcept C134306372 @default.
- W2891605032 hasConcept C152745839 @default.
- W2891605032 hasConcept C153180895 @default.
- W2891605032 hasConcept C154945302 @default.
- W2891605032 hasConcept C158622935 @default.
- W2891605032 hasConcept C160446489 @default.
- W2891605032 hasConcept C165205528 @default.
- W2891605032 hasConcept C172707124 @default.
- W2891605032 hasConcept C175551986 @default.
- W2891605032 hasConcept C182335926 @default.
- W2891605032 hasConcept C185798385 @default.
- W2891605032 hasConcept C205649164 @default.
- W2891605032 hasConcept C27438332 @default.
- W2891605032 hasConcept C33923547 @default.
- W2891605032 hasConcept C41008148 @default.
- W2891605032 hasConcept C62520636 @default.
- W2891605032 hasConcept C74193536 @default.
- W2891605032 hasConcept C90119067 @default.
- W2891605032 hasConcept C98045186 @default.
- W2891605032 hasConceptScore W2891605032C111919701 @default.
- W2891605032 hasConceptScore W2891605032C11413529 @default.
- W2891605032 hasConceptScore W2891605032C114614502 @default.
- W2891605032 hasConceptScore W2891605032C121332964 @default.
- W2891605032 hasConceptScore W2891605032C122280245 @default.
- W2891605032 hasConceptScore W2891605032C12267149 @default.
- W2891605032 hasConceptScore W2891605032C124101348 @default.
- W2891605032 hasConceptScore W2891605032C127313418 @default.
- W2891605032 hasConceptScore W2891605032C13280743 @default.
- W2891605032 hasConceptScore W2891605032C134306372 @default.
- W2891605032 hasConceptScore W2891605032C152745839 @default.
- W2891605032 hasConceptScore W2891605032C153180895 @default.
- W2891605032 hasConceptScore W2891605032C154945302 @default.
- W2891605032 hasConceptScore W2891605032C158622935 @default.
- W2891605032 hasConceptScore W2891605032C160446489 @default.
- W2891605032 hasConceptScore W2891605032C165205528 @default.
- W2891605032 hasConceptScore W2891605032C172707124 @default.