Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891620995> ?p ?o ?g. }
- W2891620995 endingPage "125002" @default.
- W2891620995 startingPage "125002" @default.
- W2891620995 abstract "Inverse problems for fractional differential equations have become a promising research area because of their wide applications in many scientific and engineering fields. In particular, the correct orders of fractional derivatives are hard to know as they are usually determined by experimental data and contain non-negligible uncertainty. Therefore, research on inverse problems involving the orders is necessary. Furthermore, problems involving the inversion of fractional orders are essentially nonlinear. Since classical methods may find it hard to provide satisfactory approximations and fail to capture the relevant uncertainty, a natural way to solve such inverse problems is through a Bayesian approach. In this paper, we consider an inverse problem of simultaneously recovering the source function and the orders of both time and space fractional derivatives for a time-space fractional diffusion equation. The problem will be formulated in the Bayesian framework, where the solution is the posterior distribution incorporating the prior information about the unknown and the noisy data. Under the considered infinite-dimensional function space setting, we prove that the corresponding Bayesian inverse problem is well-defined based on a proof of the continuity of the forward mapping. In addition, we also prove that the posterior distribution depends continuously on the data with respect to the Hellinger distance. Moreover, we adopt the iterative regularizing ensemble Kalman method to provide a numerical implementation of the considered inverse problem for the one-dimensional case. The numerical results shed light on the viability and efficiency of the method." @default.
- W2891620995 created "2018-09-27" @default.
- W2891620995 creator A5003172224 @default.
- W2891620995 creator A5014948446 @default.
- W2891620995 creator A5090819827 @default.
- W2891620995 date "2018-10-01" @default.
- W2891620995 modified "2023-10-02" @default.
- W2891620995 title "Bayesian approach to a nonlinear inverse problem for a time-space fractional diffusion equation" @default.
- W2891620995 cites W1546692723 @default.
- W2891620995 cites W1968187902 @default.
- W2891620995 cites W1979955444 @default.
- W2891620995 cites W1991833335 @default.
- W2891620995 cites W1998454237 @default.
- W2891620995 cites W2001312616 @default.
- W2891620995 cites W2003191689 @default.
- W2891620995 cites W2008573113 @default.
- W2891620995 cites W2009063484 @default.
- W2891620995 cites W2016680653 @default.
- W2891620995 cites W2041540906 @default.
- W2891620995 cites W2051216605 @default.
- W2891620995 cites W2056284729 @default.
- W2891620995 cites W2082622477 @default.
- W2891620995 cites W2092525487 @default.
- W2891620995 cites W2143534834 @default.
- W2891620995 cites W2149498546 @default.
- W2891620995 cites W2152152827 @default.
- W2891620995 cites W2152657433 @default.
- W2891620995 cites W2569562745 @default.
- W2891620995 cites W2742159529 @default.
- W2891620995 cites W2744731773 @default.
- W2891620995 cites W2751486549 @default.
- W2891620995 cites W2789408438 @default.
- W2891620995 cites W2963550745 @default.
- W2891620995 cites W3099393693 @default.
- W2891620995 cites W3103444582 @default.
- W2891620995 cites W3104341454 @default.
- W2891620995 cites W414300589 @default.
- W2891620995 cites W4242259929 @default.
- W2891620995 cites W4247915326 @default.
- W2891620995 cites W902939226 @default.
- W2891620995 doi "https://doi.org/10.1088/1361-6420/aae04f" @default.
- W2891620995 hasPublicationYear "2018" @default.
- W2891620995 type Work @default.
- W2891620995 sameAs 2891620995 @default.
- W2891620995 citedByCount "19" @default.
- W2891620995 countsByYear W28916209952019 @default.
- W2891620995 countsByYear W28916209952020 @default.
- W2891620995 countsByYear W28916209952021 @default.
- W2891620995 countsByYear W28916209952022 @default.
- W2891620995 countsByYear W28916209952023 @default.
- W2891620995 crossrefType "journal-article" @default.
- W2891620995 hasAuthorship W2891620995A5003172224 @default.
- W2891620995 hasAuthorship W2891620995A5014948446 @default.
- W2891620995 hasAuthorship W2891620995A5090819827 @default.
- W2891620995 hasConcept C105795698 @default.
- W2891620995 hasConcept C107673813 @default.
- W2891620995 hasConcept C111919701 @default.
- W2891620995 hasConcept C121332964 @default.
- W2891620995 hasConcept C121864883 @default.
- W2891620995 hasConcept C134306372 @default.
- W2891620995 hasConcept C135252773 @default.
- W2891620995 hasConcept C136264566 @default.
- W2891620995 hasConcept C158622935 @default.
- W2891620995 hasConcept C162324750 @default.
- W2891620995 hasConcept C164602753 @default.
- W2891620995 hasConcept C207467116 @default.
- W2891620995 hasConcept C2524010 @default.
- W2891620995 hasConcept C2778572836 @default.
- W2891620995 hasConcept C2780378061 @default.
- W2891620995 hasConcept C28826006 @default.
- W2891620995 hasConcept C3017618536 @default.
- W2891620995 hasConcept C33923547 @default.
- W2891620995 hasConcept C41008148 @default.
- W2891620995 hasConcept C56739046 @default.
- W2891620995 hasConcept C571446 @default.
- W2891620995 hasConcept C62520636 @default.
- W2891620995 hasConcept C69357855 @default.
- W2891620995 hasConcept C97355855 @default.
- W2891620995 hasConceptScore W2891620995C105795698 @default.
- W2891620995 hasConceptScore W2891620995C107673813 @default.
- W2891620995 hasConceptScore W2891620995C111919701 @default.
- W2891620995 hasConceptScore W2891620995C121332964 @default.
- W2891620995 hasConceptScore W2891620995C121864883 @default.
- W2891620995 hasConceptScore W2891620995C134306372 @default.
- W2891620995 hasConceptScore W2891620995C135252773 @default.
- W2891620995 hasConceptScore W2891620995C136264566 @default.
- W2891620995 hasConceptScore W2891620995C158622935 @default.
- W2891620995 hasConceptScore W2891620995C162324750 @default.
- W2891620995 hasConceptScore W2891620995C164602753 @default.
- W2891620995 hasConceptScore W2891620995C207467116 @default.
- W2891620995 hasConceptScore W2891620995C2524010 @default.
- W2891620995 hasConceptScore W2891620995C2778572836 @default.
- W2891620995 hasConceptScore W2891620995C2780378061 @default.
- W2891620995 hasConceptScore W2891620995C28826006 @default.
- W2891620995 hasConceptScore W2891620995C3017618536 @default.
- W2891620995 hasConceptScore W2891620995C33923547 @default.
- W2891620995 hasConceptScore W2891620995C41008148 @default.
- W2891620995 hasConceptScore W2891620995C56739046 @default.