Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891624031> ?p ?o ?g. }
- W2891624031 endingPage "976" @default.
- W2891624031 startingPage "945" @default.
- W2891624031 abstract "Soil water evaporation plays a critical role in mass and energy exchanges across the land–atmosphere interface. Although much is known about this process, there is no agreement on the best modeling approaches to determine soil water evaporation due to the complexity of the numerical modeling scenarios and lack of experimental data available to validate such models. Existing studies show numerical and experimental discrepancies in the evaporation behavior and soil water distribution in soils at various scales, driving us to revisit the key process representation in subsurface soil. Therefore, the goal of this work is to test different mathematical formulations used to estimate evaporation from bare soils to critically evaluate the model formulations, assumptions and surface boundary conditions. This comparison required the development of three numerical models at the REV scale that vary in their complexity in characterizing water flow and evaporation, using the same modeling platform. The performance of the models was evaluated by comparing with experimental data generated from a soil tank/boundary layer wind tunnel experimental apparatus equipped with a sensor network to continuously monitor water–temperature–humidity variables. A series of experiments were performed in which the soil tank was packed with different soil types. Results demonstrate that the approaches vary in their ability to capture different stages of evaporation and no one approach can be deemed most appropriate for every scenario. When a proper top boundary condition and space discretization are defined, the Richards equation-based models (Richards model and Richards vapor model) can generally capture the evaporation behaviors across the entire range of soil saturations, comparing well with the experimental data. The simulation results of the non-equilibrium two-component two-phase model which considers vapor transport as an independent process generally agree well with the observations in terms of evaporation behavior and soil water dynamics. Certain differences in simulation results can be observed between equilibrium and non-equilibrium approaches. Comparisons of the models and the boundary layer formulations highlight the need to revisit key assumptions that influence evaporation behavior, highlighting the need to further understand water and vapor transport processes in soil to improve model accuracy." @default.
- W2891624031 created "2018-09-27" @default.
- W2891624031 creator A5005338319 @default.
- W2891624031 creator A5058515175 @default.
- W2891624031 creator A5089511693 @default.
- W2891624031 date "2018-09-17" @default.
- W2891624031 modified "2023-10-17" @default.
- W2891624031 title "Evaluation of Model Concepts to Describe Water Transport in Shallow Subsurface Soil and Across the Soil–Air Interface" @default.
- W2891624031 cites W1484019380 @default.
- W2891624031 cites W1495615335 @default.
- W2891624031 cites W1501847083 @default.
- W2891624031 cites W1555972977 @default.
- W2891624031 cites W1556995040 @default.
- W2891624031 cites W1557338903 @default.
- W2891624031 cites W1603608242 @default.
- W2891624031 cites W1612566491 @default.
- W2891624031 cites W1615875926 @default.
- W2891624031 cites W1631221105 @default.
- W2891624031 cites W1660144379 @default.
- W2891624031 cites W1779891706 @default.
- W2891624031 cites W1782765197 @default.
- W2891624031 cites W1859765800 @default.
- W2891624031 cites W1965459517 @default.
- W2891624031 cites W1969416546 @default.
- W2891624031 cites W1981823082 @default.
- W2891624031 cites W1982448001 @default.
- W2891624031 cites W1987672876 @default.
- W2891624031 cites W1994389143 @default.
- W2891624031 cites W1995860880 @default.
- W2891624031 cites W2000117822 @default.
- W2891624031 cites W2000971674 @default.
- W2891624031 cites W2004546315 @default.
- W2891624031 cites W2004809248 @default.
- W2891624031 cites W2004923136 @default.
- W2891624031 cites W2007325944 @default.
- W2891624031 cites W2009766566 @default.
- W2891624031 cites W2020901817 @default.
- W2891624031 cites W2024277765 @default.
- W2891624031 cites W2025688578 @default.
- W2891624031 cites W2026178626 @default.
- W2891624031 cites W2026231571 @default.
- W2891624031 cites W2032256027 @default.
- W2891624031 cites W2042313417 @default.
- W2891624031 cites W2043894559 @default.
- W2891624031 cites W2044453793 @default.
- W2891624031 cites W2044466876 @default.
- W2891624031 cites W2048568378 @default.
- W2891624031 cites W2064981162 @default.
- W2891624031 cites W2064996123 @default.
- W2891624031 cites W2066338511 @default.
- W2891624031 cites W2069859420 @default.
- W2891624031 cites W2071708188 @default.
- W2891624031 cites W2075272726 @default.
- W2891624031 cites W2076271908 @default.
- W2891624031 cites W2079581428 @default.
- W2891624031 cites W2080705298 @default.
- W2891624031 cites W2083857556 @default.
- W2891624031 cites W2093076406 @default.
- W2891624031 cites W2099458996 @default.
- W2891624031 cites W2102406667 @default.
- W2891624031 cites W2102847508 @default.
- W2891624031 cites W2107860705 @default.
- W2891624031 cites W2114346806 @default.
- W2891624031 cites W2114539112 @default.
- W2891624031 cites W2116901603 @default.
- W2891624031 cites W2118677210 @default.
- W2891624031 cites W2126687423 @default.
- W2891624031 cites W2143979013 @default.
- W2891624031 cites W2148435810 @default.
- W2891624031 cites W2151458399 @default.
- W2891624031 cites W2155076110 @default.
- W2891624031 cites W2156248876 @default.
- W2891624031 cites W2162604593 @default.
- W2891624031 cites W2162604832 @default.
- W2891624031 cites W2163863607 @default.
- W2891624031 cites W2164796415 @default.
- W2891624031 cites W2167178615 @default.
- W2891624031 cites W2169820811 @default.
- W2891624031 cites W2333566962 @default.
- W2891624031 cites W2524146688 @default.
- W2891624031 cites W2583535005 @default.
- W2891624031 cites W2584583936 @default.
- W2891624031 cites W2765333801 @default.
- W2891624031 cites W4211060105 @default.
- W2891624031 cites W847454162 @default.
- W2891624031 cites W1986862740 @default.
- W2891624031 doi "https://doi.org/10.1007/s11242-018-1144-9" @default.
- W2891624031 hasPublicationYear "2018" @default.
- W2891624031 type Work @default.
- W2891624031 sameAs 2891624031 @default.
- W2891624031 citedByCount "13" @default.
- W2891624031 countsByYear W28916240312019 @default.
- W2891624031 countsByYear W28916240312020 @default.
- W2891624031 countsByYear W28916240312021 @default.
- W2891624031 countsByYear W28916240312022 @default.
- W2891624031 countsByYear W28916240312023 @default.
- W2891624031 crossrefType "journal-article" @default.
- W2891624031 hasAuthorship W2891624031A5005338319 @default.