Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891625068> ?p ?o ?g. }
- W2891625068 endingPage "1210" @default.
- W2891625068 startingPage "1210" @default.
- W2891625068 abstract "This study presents three new hybrid artificial intelligence optimization models—namely, adaptive neuro-fuzzy inference system (ANFIS) with cultural (ANFIS-CA), bees (ANFIS-BA), and invasive weed optimization (ANFIS-IWO) algorithms—for flood susceptibility mapping (FSM) in the Haraz watershed, Iran. Ten continuous and categorical flood conditioning factors were chosen based on the 201 flood locations, including topographic wetness index (TWI), river density, stream power index (SPI), curvature, distance from river, lithology, elevation, ground slope, land use, and rainfall. The step-wise weight assessment ratio analysis (SWARA) model was adopted for the assessment of relationship between flood locations and conditioning factors. The ANFIS model, based on SWARA weights, was employed for providing FSMs with three optimization models to enhance the accuracy of prediction. To evaluate the model performance and prediction capability, root-mean-square error (RMSE) and receiver operating characteristic (ROC) curve (area under the ROC (AUROC)) were used. Results showed that ANFIS-IWO with lower RMSE (0.359) had a better performance, while ANFIS-BA with higher AUROC (94.4%) showed a better prediction capability, followed by ANFIS0-IWO (0.939) and ANFIS-CA (0.921). These models can be suggested for FSM in similar climatic and physiographic areas for developing measures to mitigate flood damages and to sustainably manage floodplains." @default.
- W2891625068 created "2018-09-27" @default.
- W2891625068 creator A5015768486 @default.
- W2891625068 creator A5035752085 @default.
- W2891625068 creator A5049047942 @default.
- W2891625068 creator A5051623706 @default.
- W2891625068 creator A5052041336 @default.
- W2891625068 creator A5056706783 @default.
- W2891625068 creator A5058653182 @default.
- W2891625068 creator A5076352077 @default.
- W2891625068 creator A5083514118 @default.
- W2891625068 creator A5086115155 @default.
- W2891625068 creator A5091211368 @default.
- W2891625068 date "2018-09-07" @default.
- W2891625068 modified "2023-10-18" @default.
- W2891625068 title "New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling" @default.
- W2891625068 cites W1114923635 @default.
- W2891625068 cites W1139385156 @default.
- W2891625068 cites W1576389639 @default.
- W2891625068 cites W16088600 @default.
- W2891625068 cites W1865130434 @default.
- W2891625068 cites W1951039618 @default.
- W2891625068 cites W1967622273 @default.
- W2891625068 cites W1974281059 @default.
- W2891625068 cites W1974614011 @default.
- W2891625068 cites W1975914988 @default.
- W2891625068 cites W1976753492 @default.
- W2891625068 cites W1977040034 @default.
- W2891625068 cites W1979282872 @default.
- W2891625068 cites W1981300076 @default.
- W2891625068 cites W1981646498 @default.
- W2891625068 cites W1989692403 @default.
- W2891625068 cites W1991138803 @default.
- W2891625068 cites W1993934953 @default.
- W2891625068 cites W1994234742 @default.
- W2891625068 cites W1997143177 @default.
- W2891625068 cites W2016847503 @default.
- W2891625068 cites W2019207321 @default.
- W2891625068 cites W2020432660 @default.
- W2891625068 cites W2021839541 @default.
- W2891625068 cites W2025148441 @default.
- W2891625068 cites W2027386095 @default.
- W2891625068 cites W2027804648 @default.
- W2891625068 cites W2029816621 @default.
- W2891625068 cites W2032874589 @default.
- W2891625068 cites W2042315239 @default.
- W2891625068 cites W2042951326 @default.
- W2891625068 cites W2049604804 @default.
- W2891625068 cites W2049917276 @default.
- W2891625068 cites W2054036854 @default.
- W2891625068 cites W2056258586 @default.
- W2891625068 cites W2058082754 @default.
- W2891625068 cites W2065949495 @default.
- W2891625068 cites W2079325629 @default.
- W2891625068 cites W2082655554 @default.
- W2891625068 cites W2088730795 @default.
- W2891625068 cites W2090073041 @default.
- W2891625068 cites W2095239580 @default.
- W2891625068 cites W2098937035 @default.
- W2891625068 cites W2108672393 @default.
- W2891625068 cites W2112435054 @default.
- W2891625068 cites W2130114970 @default.
- W2891625068 cites W2133321814 @default.
- W2891625068 cites W2137034166 @default.
- W2891625068 cites W2145087005 @default.
- W2891625068 cites W2145403675 @default.
- W2891625068 cites W2156589291 @default.
- W2891625068 cites W2166046088 @default.
- W2891625068 cites W2255781275 @default.
- W2891625068 cites W2280221537 @default.
- W2891625068 cites W2300098641 @default.
- W2891625068 cites W2309165934 @default.
- W2891625068 cites W2322572520 @default.
- W2891625068 cites W2344876348 @default.
- W2891625068 cites W234628381 @default.
- W2891625068 cites W2408377373 @default.
- W2891625068 cites W2423094380 @default.
- W2891625068 cites W2466177193 @default.
- W2891625068 cites W2489814317 @default.
- W2891625068 cites W2539410131 @default.
- W2891625068 cites W2549184242 @default.
- W2891625068 cites W2567854072 @default.
- W2891625068 cites W2584223413 @default.
- W2891625068 cites W2606983391 @default.
- W2891625068 cites W2615467640 @default.
- W2891625068 cites W2620530835 @default.
- W2891625068 cites W2621028994 @default.
- W2891625068 cites W2640557513 @default.
- W2891625068 cites W2761698665 @default.
- W2891625068 cites W2765742909 @default.
- W2891625068 cites W2783138654 @default.
- W2891625068 cites W2791328889 @default.
- W2891625068 cites W2791665776 @default.
- W2891625068 cites W2796299618 @default.
- W2891625068 cites W2798092257 @default.
- W2891625068 cites W2800522401 @default.
- W2891625068 cites W2887887128 @default.
- W2891625068 cites W4241727697 @default.