Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891626168> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2891626168 abstract "Cross-scene crowd counting plays a more and more important role in intelligent scene monitoring, and it is very important in the safety of personnel and the scene scheduling. The traditional estimation of crowd counting is mainly dependent on the simple background of scenes, which is not conducive to the complex background. To address this problem, in this paper, we propose a multi convolutional kernels net for crowd counting, which discards the subjectivity and the occasionality of the traditional manual feature extraction. Firstly, we label dataset for convolution output features. Then we use the fully convolutional network to create the density map at the end of the network with multi convolutional kernels. Finally, we perform integral regression on density maps to estimate the crowd counting. The dataset that we used is a set of publicly available datasets, which are the Shanghaitech dataset, the UCF_CC_50 dataset and the UCSD dataset. The experiments based on video images show that the proposed method is more effective than traditional methods in terms of robustness and accuracy." @default.
- W2891626168 created "2018-09-27" @default.
- W2891626168 creator A5018228131 @default.
- W2891626168 creator A5061671556 @default.
- W2891626168 creator A5068176076 @default.
- W2891626168 creator A5071353174 @default.
- W2891626168 creator A5071672663 @default.
- W2891626168 creator A5073461610 @default.
- W2891626168 date "2018-01-01" @default.
- W2891626168 modified "2023-09-24" @default.
- W2891626168 title "Arbitrary Perspective Crowd Counting via Multi Convolutional Kernels" @default.
- W2891626168 cites W1976959044 @default.
- W2891626168 cites W1978232622 @default.
- W2891626168 cites W1992825118 @default.
- W2891626168 cites W2072232009 @default.
- W2891626168 cites W2075875861 @default.
- W2891626168 cites W2109064712 @default.
- W2891626168 cites W2123175289 @default.
- W2891626168 cites W2147221461 @default.
- W2891626168 cites W2395611524 @default.
- W2891626168 cites W2463631526 @default.
- W2891626168 doi "https://doi.org/10.1007/978-3-030-00767-6_52" @default.
- W2891626168 hasPublicationYear "2018" @default.
- W2891626168 type Work @default.
- W2891626168 sameAs 2891626168 @default.
- W2891626168 citedByCount "0" @default.
- W2891626168 crossrefType "book-chapter" @default.
- W2891626168 hasAuthorship W2891626168A5018228131 @default.
- W2891626168 hasAuthorship W2891626168A5061671556 @default.
- W2891626168 hasAuthorship W2891626168A5068176076 @default.
- W2891626168 hasAuthorship W2891626168A5071353174 @default.
- W2891626168 hasAuthorship W2891626168A5071672663 @default.
- W2891626168 hasAuthorship W2891626168A5073461610 @default.
- W2891626168 hasConcept C104317684 @default.
- W2891626168 hasConcept C115961682 @default.
- W2891626168 hasConcept C153180895 @default.
- W2891626168 hasConcept C154945302 @default.
- W2891626168 hasConcept C177264268 @default.
- W2891626168 hasConcept C185592680 @default.
- W2891626168 hasConcept C199360897 @default.
- W2891626168 hasConcept C2779989122 @default.
- W2891626168 hasConcept C31972630 @default.
- W2891626168 hasConcept C41008148 @default.
- W2891626168 hasConcept C45347329 @default.
- W2891626168 hasConcept C50644808 @default.
- W2891626168 hasConcept C52622490 @default.
- W2891626168 hasConcept C55493867 @default.
- W2891626168 hasConcept C63479239 @default.
- W2891626168 hasConcept C81363708 @default.
- W2891626168 hasConceptScore W2891626168C104317684 @default.
- W2891626168 hasConceptScore W2891626168C115961682 @default.
- W2891626168 hasConceptScore W2891626168C153180895 @default.
- W2891626168 hasConceptScore W2891626168C154945302 @default.
- W2891626168 hasConceptScore W2891626168C177264268 @default.
- W2891626168 hasConceptScore W2891626168C185592680 @default.
- W2891626168 hasConceptScore W2891626168C199360897 @default.
- W2891626168 hasConceptScore W2891626168C2779989122 @default.
- W2891626168 hasConceptScore W2891626168C31972630 @default.
- W2891626168 hasConceptScore W2891626168C41008148 @default.
- W2891626168 hasConceptScore W2891626168C45347329 @default.
- W2891626168 hasConceptScore W2891626168C50644808 @default.
- W2891626168 hasConceptScore W2891626168C52622490 @default.
- W2891626168 hasConceptScore W2891626168C55493867 @default.
- W2891626168 hasConceptScore W2891626168C63479239 @default.
- W2891626168 hasConceptScore W2891626168C81363708 @default.
- W2891626168 hasLocation W28916261681 @default.
- W2891626168 hasOpenAccess W2891626168 @default.
- W2891626168 hasPrimaryLocation W28916261681 @default.
- W2891626168 hasRelatedWork W2003778512 @default.
- W2891626168 hasRelatedWork W2394843433 @default.
- W2891626168 hasRelatedWork W2802219444 @default.
- W2891626168 hasRelatedWork W2902549641 @default.
- W2891626168 hasRelatedWork W2945938995 @default.
- W2891626168 hasRelatedWork W2946317340 @default.
- W2891626168 hasRelatedWork W2962720716 @default.
- W2891626168 hasRelatedWork W2965837209 @default.
- W2891626168 hasRelatedWork W2966893608 @default.
- W2891626168 hasRelatedWork W2990733877 @default.
- W2891626168 hasRelatedWork W3007705499 @default.
- W2891626168 hasRelatedWork W3027134841 @default.
- W2891626168 hasRelatedWork W3093858573 @default.
- W2891626168 hasRelatedWork W3106949330 @default.
- W2891626168 hasRelatedWork W3123334831 @default.
- W2891626168 hasRelatedWork W3148708966 @default.
- W2891626168 hasRelatedWork W3160829092 @default.
- W2891626168 hasRelatedWork W3202261666 @default.
- W2891626168 hasRelatedWork W3204130207 @default.
- W2891626168 hasRelatedWork W2952424733 @default.
- W2891626168 isParatext "false" @default.
- W2891626168 isRetracted "false" @default.
- W2891626168 magId "2891626168" @default.
- W2891626168 workType "book-chapter" @default.