Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891626537> ?p ?o ?g. }
- W2891626537 abstract "This paper proposes sparse and easy-to-interpret proximate factors to approximate statistical latent factors. Latent factors in a large-dimensional factor model can be estimated by principal component analysis (PCA), but are usually hard to interpret. We obtain proximate factors that are easier to interpret by shrinking the PCA factor weights and setting them to zero except for the largest absolute ones. We show that proximate factors constructed with only 5-10% of the data are usually sufficient to almost perfectly replicate the population and PCA factors without actually assuming a sparse structure in the weights or loadings. Using extreme value theory we explain why sparse proximate factors can be substitutes for non-sparse PCA factors. We derive analytical asymptotic bounds for the correlation of appropriately rotated proximate factors with the population factors. These bounds provide guidance on how to construct the proximate factors. In simulations and empirical analyses of financial portfolio and macroeconomic data we illustrate that sparse proximate factors are close substitutes for PCA factors with average correlations of around 97.5% while being interpretable." @default.
- W2891626537 created "2018-09-27" @default.
- W2891626537 creator A5036061838 @default.
- W2891626537 creator A5036333323 @default.
- W2891626537 date "2018-05-09" @default.
- W2891626537 modified "2023-09-26" @default.
- W2891626537 title "Interpretable Sparse Proximate Factors for Large Dimensions" @default.
- W2891626537 cites W1480376833 @default.
- W2891626537 cites W1500657154 @default.
- W2891626537 cites W1511548726 @default.
- W2891626537 cites W1517157188 @default.
- W2891626537 cites W1573806138 @default.
- W2891626537 cites W1839044816 @default.
- W2891626537 cites W1970136394 @default.
- W2891626537 cites W1975900269 @default.
- W2891626537 cites W1997320786 @default.
- W2891626537 cites W2000632882 @default.
- W2891626537 cites W2014165366 @default.
- W2891626537 cites W2029721016 @default.
- W2891626537 cites W2040373108 @default.
- W2891626537 cites W2043440217 @default.
- W2891626537 cites W2063698478 @default.
- W2891626537 cites W2063978378 @default.
- W2891626537 cites W2071706689 @default.
- W2891626537 cites W2079563517 @default.
- W2891626537 cites W2107002547 @default.
- W2891626537 cites W2112447569 @default.
- W2891626537 cites W2122825543 @default.
- W2891626537 cites W2126917700 @default.
- W2891626537 cites W2134332047 @default.
- W2891626537 cites W2135046866 @default.
- W2891626537 cites W2141385698 @default.
- W2891626537 cites W2145962650 @default.
- W2891626537 cites W2159706540 @default.
- W2891626537 cites W2164743749 @default.
- W2891626537 cites W2166215547 @default.
- W2891626537 cites W2257263437 @default.
- W2891626537 cites W2279986002 @default.
- W2891626537 cites W2305541928 @default.
- W2891626537 cites W2324309783 @default.
- W2891626537 cites W2492689508 @default.
- W2891626537 cites W2509892980 @default.
- W2891626537 cites W2586367507 @default.
- W2891626537 cites W2868686466 @default.
- W2891626537 cites W2891565894 @default.
- W2891626537 cites W2900466660 @default.
- W2891626537 cites W2938549779 @default.
- W2891626537 cites W2980628834 @default.
- W2891626537 cites W3023737942 @default.
- W2891626537 cites W3023877248 @default.
- W2891626537 cites W3047249868 @default.
- W2891626537 cites W3103757612 @default.
- W2891626537 cites W3121287929 @default.
- W2891626537 cites W3122843312 @default.
- W2891626537 cites W3123638141 @default.
- W2891626537 cites W3124477952 @default.
- W2891626537 cites W3124904104 @default.
- W2891626537 cites W3125239845 @default.
- W2891626537 cites W3125714952 @default.
- W2891626537 cites W3125965402 @default.
- W2891626537 cites W3126136988 @default.
- W2891626537 cites W598987390 @default.
- W2891626537 cites W2919136065 @default.
- W2891626537 doi "https://doi.org/10.48550/arxiv.1805.03373" @default.
- W2891626537 hasPublicationYear "2018" @default.
- W2891626537 type Work @default.
- W2891626537 sameAs 2891626537 @default.
- W2891626537 citedByCount "1" @default.
- W2891626537 countsByYear W28916265372019 @default.
- W2891626537 crossrefType "posted-content" @default.
- W2891626537 hasAuthorship W2891626537A5036061838 @default.
- W2891626537 hasAuthorship W2891626537A5036333323 @default.
- W2891626537 hasBestOaLocation W28916265371 @default.
- W2891626537 hasConcept C105795698 @default.
- W2891626537 hasConcept C10879293 @default.
- W2891626537 hasConcept C144024400 @default.
- W2891626537 hasConcept C149782125 @default.
- W2891626537 hasConcept C149923435 @default.
- W2891626537 hasConcept C153180895 @default.
- W2891626537 hasConcept C154945302 @default.
- W2891626537 hasConcept C199360897 @default.
- W2891626537 hasConcept C27438332 @default.
- W2891626537 hasConcept C2780539549 @default.
- W2891626537 hasConcept C2780801425 @default.
- W2891626537 hasConcept C28826006 @default.
- W2891626537 hasConcept C2908647359 @default.
- W2891626537 hasConcept C31903555 @default.
- W2891626537 hasConcept C33923547 @default.
- W2891626537 hasConcept C41008148 @default.
- W2891626537 hasConcept C86803240 @default.
- W2891626537 hasConceptScore W2891626537C105795698 @default.
- W2891626537 hasConceptScore W2891626537C10879293 @default.
- W2891626537 hasConceptScore W2891626537C144024400 @default.
- W2891626537 hasConceptScore W2891626537C149782125 @default.
- W2891626537 hasConceptScore W2891626537C149923435 @default.
- W2891626537 hasConceptScore W2891626537C153180895 @default.
- W2891626537 hasConceptScore W2891626537C154945302 @default.
- W2891626537 hasConceptScore W2891626537C199360897 @default.
- W2891626537 hasConceptScore W2891626537C27438332 @default.
- W2891626537 hasConceptScore W2891626537C2780539549 @default.