Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891639424> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2891639424 abstract "Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%." @default.
- W2891639424 created "2018-09-27" @default.
- W2891639424 creator A5002547151 @default.
- W2891639424 creator A5042626642 @default.
- W2891639424 creator A5050112080 @default.
- W2891639424 date "2018-08-01" @default.
- W2891639424 modified "2023-09-27" @default.
- W2891639424 title "Effective Botnet Detection Through Neural Networks on Convolutional Features" @default.
- W2891639424 cites W1462349742 @default.
- W2891639424 cites W1516506771 @default.
- W2891639424 cites W1551705282 @default.
- W2891639424 cites W1583098994 @default.
- W2891639424 cites W1599476119 @default.
- W2891639424 cites W1626362440 @default.
- W2891639424 cites W1676351273 @default.
- W2891639424 cites W1775772884 @default.
- W2891639424 cites W191098608 @default.
- W2891639424 cites W1916198581 @default.
- W2891639424 cites W1962340579 @default.
- W2891639424 cites W1972629404 @default.
- W2891639424 cites W1992713826 @default.
- W2891639424 cites W1995562189 @default.
- W2891639424 cites W2003967425 @default.
- W2891639424 cites W2012917383 @default.
- W2891639424 cites W2027585446 @default.
- W2891639424 cites W2077488147 @default.
- W2891639424 cites W2093331366 @default.
- W2891639424 cites W2112796928 @default.
- W2891639424 cites W2163605009 @default.
- W2891639424 cites W2168248885 @default.
- W2891639424 cites W2188584537 @default.
- W2891639424 cites W2239778906 @default.
- W2891639424 cites W2254364023 @default.
- W2891639424 cites W2263865046 @default.
- W2891639424 cites W2505151570 @default.
- W2891639424 cites W2534494200 @default.
- W2891639424 cites W2547125715 @default.
- W2891639424 cites W47988595 @default.
- W2891639424 cites W86173103 @default.
- W2891639424 cites W1961198805 @default.
- W2891639424 doi "https://doi.org/10.1109/trustcom/bigdatase.2018.00062" @default.
- W2891639424 hasPublicationYear "2018" @default.
- W2891639424 type Work @default.
- W2891639424 sameAs 2891639424 @default.
- W2891639424 citedByCount "27" @default.
- W2891639424 countsByYear W28916394242019 @default.
- W2891639424 countsByYear W28916394242020 @default.
- W2891639424 countsByYear W28916394242021 @default.
- W2891639424 countsByYear W28916394242022 @default.
- W2891639424 countsByYear W28916394242023 @default.
- W2891639424 crossrefType "proceedings-article" @default.
- W2891639424 hasAuthorship W2891639424A5002547151 @default.
- W2891639424 hasAuthorship W2891639424A5042626642 @default.
- W2891639424 hasAuthorship W2891639424A5050112080 @default.
- W2891639424 hasConcept C108583219 @default.
- W2891639424 hasConcept C110875604 @default.
- W2891639424 hasConcept C119857082 @default.
- W2891639424 hasConcept C124101348 @default.
- W2891639424 hasConcept C136764020 @default.
- W2891639424 hasConcept C154945302 @default.
- W2891639424 hasConcept C22735295 @default.
- W2891639424 hasConcept C41008148 @default.
- W2891639424 hasConcept C81363708 @default.
- W2891639424 hasConcept C95922358 @default.
- W2891639424 hasConceptScore W2891639424C108583219 @default.
- W2891639424 hasConceptScore W2891639424C110875604 @default.
- W2891639424 hasConceptScore W2891639424C119857082 @default.
- W2891639424 hasConceptScore W2891639424C124101348 @default.
- W2891639424 hasConceptScore W2891639424C136764020 @default.
- W2891639424 hasConceptScore W2891639424C154945302 @default.
- W2891639424 hasConceptScore W2891639424C22735295 @default.
- W2891639424 hasConceptScore W2891639424C41008148 @default.
- W2891639424 hasConceptScore W2891639424C81363708 @default.
- W2891639424 hasConceptScore W2891639424C95922358 @default.
- W2891639424 hasLocation W28916394241 @default.
- W2891639424 hasOpenAccess W2891639424 @default.
- W2891639424 hasPrimaryLocation W28916394241 @default.
- W2891639424 hasRelatedWork W2731899572 @default.
- W2891639424 hasRelatedWork W2942650110 @default.
- W2891639424 hasRelatedWork W2999805992 @default.
- W2891639424 hasRelatedWork W3116150086 @default.
- W2891639424 hasRelatedWork W3133861977 @default.
- W2891639424 hasRelatedWork W4200173597 @default.
- W2891639424 hasRelatedWork W4291897433 @default.
- W2891639424 hasRelatedWork W4312417841 @default.
- W2891639424 hasRelatedWork W4321369474 @default.
- W2891639424 hasRelatedWork W4380075502 @default.
- W2891639424 isParatext "false" @default.
- W2891639424 isRetracted "false" @default.
- W2891639424 magId "2891639424" @default.
- W2891639424 workType "article" @default.