Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891644512> ?p ?o ?g. }
- W2891644512 abstract "Satellite-based aboveground forest biomass maps commonly form the basis of forest biomass and carbon stock mapping and monitoring, but biomass maps likely vary in performance by region and as a function of spatial scale of aggregation. Assessing such variability is not possible with spatially-sparse vegetation plot networks. In the current study, our objective was to determine whether high-resolution lidar-based and moderate-resolution Landsat-base aboveground live forest biomass maps converged on similar predictions at stand- to landscape-levels (10 s to 100 s ha) and whether such differences depended on biophysical setting. Specifically, we examined deviations between lidar- and Landsat-based biomass mapping methods across scales and ecoregions using a measure of error (normalized root mean square deviation), a measure of the unsystematic deviations, or noise (Pearson correlation coefficient), and two measures related to systematic deviations, or biases (intercept and slope of a regression between the two sets of predictions). Compared to forest inventory data (0.81-ha aggregate-level), lidar and Landsat-based mean biomass predictions exhibited similar performance, though lidar predictions exhibited less normalized root mean square deviation than Landsat when compared with the reference plot data. Across aggregate-levels, the intercepts and slopes of regression equations describing the relationships between lidar- and Landsat-based biomass predictions stabilized (i.e., little additional change with increasing area of aggregates) at aggregate-levels between 10 and 100 ha, suggesting a consistent relationship between the two maps at landscape-scales. Differences between lidar- and Landsat-based biomass maps varied as a function of forest canopy heterogeneity and composition, with systematic deviations (regression intercepts) increasing with mean canopy cover and hardwood proportion within forests and correlations decreasing with hardwood proportion. Deviations between lidar- and Landsat-based maps indicated that satellite-based approaches may represent general gradients in forest biomass. Ecoregion impacted deviations between lidar and Landsat biomass maps, highlighting the importance of biophysical setting in determining biomass map performance across aggregate scales. Therefore, regardless of the source of remote sensing (e.g., Landsat vs. lidar), factors affecting the measurement and prediction of forest biomass, such as species composition, need to be taken into account whether one is estimating biomass at the plot, stand, or landscape scale." @default.
- W2891644512 created "2018-09-27" @default.
- W2891644512 creator A5005658069 @default.
- W2891644512 creator A5015105817 @default.
- W2891644512 creator A5018091203 @default.
- W2891644512 creator A5024177290 @default.
- W2891644512 creator A5030258636 @default.
- W2891644512 creator A5052157609 @default.
- W2891644512 creator A5073619904 @default.
- W2891644512 date "2018-09-14" @default.
- W2891644512 modified "2023-09-23" @default.
- W2891644512 title "Multiscale divergence between Landsat- and lidar-based biomass mapping is related to regional variation in canopy cover and composition" @default.
- W2891644512 cites W1615474684 @default.
- W2891644512 cites W1769790805 @default.
- W2891644512 cites W1824836360 @default.
- W2891644512 cites W1965825034 @default.
- W2891644512 cites W1966334841 @default.
- W2891644512 cites W1968474682 @default.
- W2891644512 cites W1977338552 @default.
- W2891644512 cites W1988713966 @default.
- W2891644512 cites W1997337568 @default.
- W2891644512 cites W2002730835 @default.
- W2891644512 cites W2006286431 @default.
- W2891644512 cites W2045505889 @default.
- W2891644512 cites W2090166704 @default.
- W2891644512 cites W2098938043 @default.
- W2891644512 cites W2111940674 @default.
- W2891644512 cites W2121942758 @default.
- W2891644512 cites W2122798004 @default.
- W2891644512 cites W2134086511 @default.
- W2891644512 cites W2138102892 @default.
- W2891644512 cites W2144536354 @default.
- W2891644512 cites W2144819008 @default.
- W2891644512 cites W2150219928 @default.
- W2891644512 cites W2155617392 @default.
- W2891644512 cites W2157912881 @default.
- W2891644512 cites W2161922175 @default.
- W2891644512 cites W2166298943 @default.
- W2891644512 cites W2166761548 @default.
- W2891644512 cites W2167941657 @default.
- W2891644512 cites W2190370354 @default.
- W2891644512 cites W2340997137 @default.
- W2891644512 cites W2416310637 @default.
- W2891644512 cites W2605906338 @default.
- W2891644512 cites W2769828489 @default.
- W2891644512 doi "https://doi.org/10.1186/s13021-018-0104-6" @default.
- W2891644512 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6138055" @default.
- W2891644512 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30218413" @default.
- W2891644512 hasPublicationYear "2018" @default.
- W2891644512 type Work @default.
- W2891644512 sameAs 2891644512 @default.
- W2891644512 citedByCount "17" @default.
- W2891644512 countsByYear W28916445122019 @default.
- W2891644512 countsByYear W28916445122020 @default.
- W2891644512 countsByYear W28916445122022 @default.
- W2891644512 countsByYear W28916445122023 @default.
- W2891644512 crossrefType "journal-article" @default.
- W2891644512 hasAuthorship W2891644512A5005658069 @default.
- W2891644512 hasAuthorship W2891644512A5015105817 @default.
- W2891644512 hasAuthorship W2891644512A5018091203 @default.
- W2891644512 hasAuthorship W2891644512A5024177290 @default.
- W2891644512 hasAuthorship W2891644512A5030258636 @default.
- W2891644512 hasAuthorship W2891644512A5052157609 @default.
- W2891644512 hasAuthorship W2891644512A5073619904 @default.
- W2891644512 hasBestOaLocation W28916445121 @default.
- W2891644512 hasConcept C101000010 @default.
- W2891644512 hasConcept C105795698 @default.
- W2891644512 hasConcept C115540264 @default.
- W2891644512 hasConcept C142724271 @default.
- W2891644512 hasConcept C147103442 @default.
- W2891644512 hasConcept C158709400 @default.
- W2891644512 hasConcept C18903297 @default.
- W2891644512 hasConcept C205649164 @default.
- W2891644512 hasConcept C2776133958 @default.
- W2891644512 hasConcept C2778755073 @default.
- W2891644512 hasConcept C28631016 @default.
- W2891644512 hasConcept C33923547 @default.
- W2891644512 hasConcept C39432304 @default.
- W2891644512 hasConcept C51399673 @default.
- W2891644512 hasConcept C54286561 @default.
- W2891644512 hasConcept C58640448 @default.
- W2891644512 hasConcept C62649853 @default.
- W2891644512 hasConcept C71924100 @default.
- W2891644512 hasConcept C86803240 @default.
- W2891644512 hasConcept C94747663 @default.
- W2891644512 hasConceptScore W2891644512C101000010 @default.
- W2891644512 hasConceptScore W2891644512C105795698 @default.
- W2891644512 hasConceptScore W2891644512C115540264 @default.
- W2891644512 hasConceptScore W2891644512C142724271 @default.
- W2891644512 hasConceptScore W2891644512C147103442 @default.
- W2891644512 hasConceptScore W2891644512C158709400 @default.
- W2891644512 hasConceptScore W2891644512C18903297 @default.
- W2891644512 hasConceptScore W2891644512C205649164 @default.
- W2891644512 hasConceptScore W2891644512C2776133958 @default.
- W2891644512 hasConceptScore W2891644512C2778755073 @default.
- W2891644512 hasConceptScore W2891644512C28631016 @default.
- W2891644512 hasConceptScore W2891644512C33923547 @default.
- W2891644512 hasConceptScore W2891644512C39432304 @default.
- W2891644512 hasConceptScore W2891644512C51399673 @default.
- W2891644512 hasConceptScore W2891644512C54286561 @default.