Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891645922> ?p ?o ?g. }
- W2891645922 abstract "Exploring the human structural connectome often involves dealing with millions of white matter tracts reconstructed from diffusion MRI. Reducing the dimensionality of such data by grouping tracts into bundles can prove essential for subsequent analyses. Many unsupervised clustering algorithms aim at providing such bundles but often require the choice of a distance metric and suffer from memory storage issues relating to the size of the datasets. We propose for the first time a neural network approach for the unsupervised clustering of white matter tracts. It has the main properties of learning automatically the tract features and scaling well with the data size. As a proof of concept, we compare both quantitatively and qualitatively the computed tract clusters with a commonly used clustering method. The proposed approach shows results similar to the reference approach while not using any distance matrix or similarity metric." @default.
- W2891645922 created "2018-09-27" @default.
- W2891645922 creator A5003848368 @default.
- W2891645922 creator A5004201513 @default.
- W2891645922 creator A5007242502 @default.
- W2891645922 creator A5008835382 @default.
- W2891645922 creator A5012525858 @default.
- W2891645922 date "2018-10-01" @default.
- W2891645922 modified "2023-09-23" @default.
- W2891645922 title "Unsupervised Detection of White Matter Fiber Bundles with Stochastic Neural Networks" @default.
- W2891645922 cites W1840855560 @default.
- W2891645922 cites W1941443223 @default.
- W2891645922 cites W1983334819 @default.
- W2891645922 cites W1985233718 @default.
- W2891645922 cites W1993003146 @default.
- W2891645922 cites W1997535147 @default.
- W2891645922 cites W2016086132 @default.
- W2891645922 cites W2024729467 @default.
- W2891645922 cites W2038568172 @default.
- W2891645922 cites W2046213817 @default.
- W2891645922 cites W2116825644 @default.
- W2891645922 cites W2161281218 @default.
- W2891645922 cites W2170480020 @default.
- W2891645922 cites W2201547794 @default.
- W2891645922 cites W2328247767 @default.
- W2891645922 cites W2608218705 @default.
- W2891645922 cites W2612025826 @default.
- W2891645922 cites W2619442608 @default.
- W2891645922 cites W2621911999 @default.
- W2891645922 cites W2734511143 @default.
- W2891645922 cites W2739225525 @default.
- W2891645922 cites W2757712606 @default.
- W2891645922 cites W2758113150 @default.
- W2891645922 doi "https://doi.org/10.1109/icip.2018.8451498" @default.
- W2891645922 hasPublicationYear "2018" @default.
- W2891645922 type Work @default.
- W2891645922 sameAs 2891645922 @default.
- W2891645922 citedByCount "0" @default.
- W2891645922 crossrefType "proceedings-article" @default.
- W2891645922 hasAuthorship W2891645922A5003848368 @default.
- W2891645922 hasAuthorship W2891645922A5004201513 @default.
- W2891645922 hasAuthorship W2891645922A5007242502 @default.
- W2891645922 hasAuthorship W2891645922A5008835382 @default.
- W2891645922 hasAuthorship W2891645922A5012525858 @default.
- W2891645922 hasConcept C103278499 @default.
- W2891645922 hasConcept C111030470 @default.
- W2891645922 hasConcept C111208986 @default.
- W2891645922 hasConcept C11413529 @default.
- W2891645922 hasConcept C115961682 @default.
- W2891645922 hasConcept C119857082 @default.
- W2891645922 hasConcept C126838900 @default.
- W2891645922 hasConcept C143409427 @default.
- W2891645922 hasConcept C146710177 @default.
- W2891645922 hasConcept C149550507 @default.
- W2891645922 hasConcept C153180895 @default.
- W2891645922 hasConcept C154945302 @default.
- W2891645922 hasConcept C159985019 @default.
- W2891645922 hasConcept C162324750 @default.
- W2891645922 hasConcept C176217482 @default.
- W2891645922 hasConcept C192562407 @default.
- W2891645922 hasConcept C21547014 @default.
- W2891645922 hasConcept C2778134712 @default.
- W2891645922 hasConcept C41008148 @default.
- W2891645922 hasConcept C50644808 @default.
- W2891645922 hasConcept C70518039 @default.
- W2891645922 hasConcept C71924100 @default.
- W2891645922 hasConcept C73555534 @default.
- W2891645922 hasConcept C8038995 @default.
- W2891645922 hasConcept C91682802 @default.
- W2891645922 hasConceptScore W2891645922C103278499 @default.
- W2891645922 hasConceptScore W2891645922C111030470 @default.
- W2891645922 hasConceptScore W2891645922C111208986 @default.
- W2891645922 hasConceptScore W2891645922C11413529 @default.
- W2891645922 hasConceptScore W2891645922C115961682 @default.
- W2891645922 hasConceptScore W2891645922C119857082 @default.
- W2891645922 hasConceptScore W2891645922C126838900 @default.
- W2891645922 hasConceptScore W2891645922C143409427 @default.
- W2891645922 hasConceptScore W2891645922C146710177 @default.
- W2891645922 hasConceptScore W2891645922C149550507 @default.
- W2891645922 hasConceptScore W2891645922C153180895 @default.
- W2891645922 hasConceptScore W2891645922C154945302 @default.
- W2891645922 hasConceptScore W2891645922C159985019 @default.
- W2891645922 hasConceptScore W2891645922C162324750 @default.
- W2891645922 hasConceptScore W2891645922C176217482 @default.
- W2891645922 hasConceptScore W2891645922C192562407 @default.
- W2891645922 hasConceptScore W2891645922C21547014 @default.
- W2891645922 hasConceptScore W2891645922C2778134712 @default.
- W2891645922 hasConceptScore W2891645922C41008148 @default.
- W2891645922 hasConceptScore W2891645922C50644808 @default.
- W2891645922 hasConceptScore W2891645922C70518039 @default.
- W2891645922 hasConceptScore W2891645922C71924100 @default.
- W2891645922 hasConceptScore W2891645922C73555534 @default.
- W2891645922 hasConceptScore W2891645922C8038995 @default.
- W2891645922 hasConceptScore W2891645922C91682802 @default.
- W2891645922 hasLocation W28916459221 @default.
- W2891645922 hasOpenAccess W2891645922 @default.
- W2891645922 hasPrimaryLocation W28916459221 @default.
- W2891645922 hasRelatedWork W2095739675 @default.
- W2891645922 hasRelatedWork W2095834362 @default.
- W2891645922 hasRelatedWork W2111101684 @default.