Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891656163> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2891656163 endingPage "12" @default.
- W2891656163 startingPage "1" @default.
- W2891656163 abstract "Cloud Computing has become prime infrastructure for scientists to deploy scientific applications as it offers parallel and distributed environment for large-scale computations. During deployment, the significant prediction of resource usage is essential to achieve optimal scheduling for scientific applications. The existing resource prediction models fall short in providing reasonable accuracy because of high variances of cloud metrics. Therefore, to handle the varying cloud resource demands, it is necessary to accurately predict the future resource requirements for automatically provisioning the resources. In this paper, an Intelligent Regressive Ensemble Approach for Prediction (REAP) has been proposed which integrates feature selection and resource usage prediction techniques to achieve high performance. The effectiveness of proposed approach is evaluated in a real cloud environment by conducting a series of experiments. The experimental results show that the proposed approach outperforms the existing models by significantly improving the accuracy rate and reducing the execution time. The results are further validated by comparing the existing Learning Automata (LA) based ensemble approach with the proposed approach on the basis of error rate." @default.
- W2891656163 created "2018-09-27" @default.
- W2891656163 creator A5002950545 @default.
- W2891656163 creator A5008622355 @default.
- W2891656163 creator A5063451648 @default.
- W2891656163 date "2019-01-01" @default.
- W2891656163 modified "2023-10-10" @default.
- W2891656163 title "An intelligent regressive ensemble approach for predicting resource usage in cloud computing" @default.
- W2891656163 cites W1750422355 @default.
- W2891656163 cites W2000233152 @default.
- W2891656163 cites W2028351695 @default.
- W2891656163 cites W2032618441 @default.
- W2891656163 cites W2084651355 @default.
- W2891656163 cites W2119438912 @default.
- W2891656163 cites W2282727795 @default.
- W2891656163 cites W2476849799 @default.
- W2891656163 cites W2559997726 @default.
- W2891656163 cites W2561389184 @default.
- W2891656163 cites W2578279218 @default.
- W2891656163 cites W2587964702 @default.
- W2891656163 cites W2609260717 @default.
- W2891656163 cites W2736613837 @default.
- W2891656163 cites W2763398542 @default.
- W2891656163 cites W2770247661 @default.
- W2891656163 cites W2775287056 @default.
- W2891656163 cites W2784833642 @default.
- W2891656163 cites W3124559709 @default.
- W2891656163 doi "https://doi.org/10.1016/j.jpdc.2018.08.008" @default.
- W2891656163 hasPublicationYear "2019" @default.
- W2891656163 type Work @default.
- W2891656163 sameAs 2891656163 @default.
- W2891656163 citedByCount "47" @default.
- W2891656163 countsByYear W28916561632019 @default.
- W2891656163 countsByYear W28916561632020 @default.
- W2891656163 countsByYear W28916561632021 @default.
- W2891656163 countsByYear W28916561632022 @default.
- W2891656163 countsByYear W28916561632023 @default.
- W2891656163 crossrefType "journal-article" @default.
- W2891656163 hasAuthorship W2891656163A5002950545 @default.
- W2891656163 hasAuthorship W2891656163A5008622355 @default.
- W2891656163 hasAuthorship W2891656163A5063451648 @default.
- W2891656163 hasConcept C105339364 @default.
- W2891656163 hasConcept C111919701 @default.
- W2891656163 hasConcept C115903868 @default.
- W2891656163 hasConcept C119857082 @default.
- W2891656163 hasConcept C120314980 @default.
- W2891656163 hasConcept C124101348 @default.
- W2891656163 hasConcept C154945302 @default.
- W2891656163 hasConcept C162324750 @default.
- W2891656163 hasConcept C172191483 @default.
- W2891656163 hasConcept C206345919 @default.
- W2891656163 hasConcept C206729178 @default.
- W2891656163 hasConcept C21547014 @default.
- W2891656163 hasConcept C31258907 @default.
- W2891656163 hasConcept C41008148 @default.
- W2891656163 hasConcept C76155785 @default.
- W2891656163 hasConcept C79974875 @default.
- W2891656163 hasConceptScore W2891656163C105339364 @default.
- W2891656163 hasConceptScore W2891656163C111919701 @default.
- W2891656163 hasConceptScore W2891656163C115903868 @default.
- W2891656163 hasConceptScore W2891656163C119857082 @default.
- W2891656163 hasConceptScore W2891656163C120314980 @default.
- W2891656163 hasConceptScore W2891656163C124101348 @default.
- W2891656163 hasConceptScore W2891656163C154945302 @default.
- W2891656163 hasConceptScore W2891656163C162324750 @default.
- W2891656163 hasConceptScore W2891656163C172191483 @default.
- W2891656163 hasConceptScore W2891656163C206345919 @default.
- W2891656163 hasConceptScore W2891656163C206729178 @default.
- W2891656163 hasConceptScore W2891656163C21547014 @default.
- W2891656163 hasConceptScore W2891656163C31258907 @default.
- W2891656163 hasConceptScore W2891656163C41008148 @default.
- W2891656163 hasConceptScore W2891656163C76155785 @default.
- W2891656163 hasConceptScore W2891656163C79974875 @default.
- W2891656163 hasFunder F4320320721 @default.
- W2891656163 hasLocation W28916561631 @default.
- W2891656163 hasOpenAccess W2891656163 @default.
- W2891656163 hasPrimaryLocation W28916561631 @default.
- W2891656163 hasRelatedWork W2369811061 @default.
- W2891656163 hasRelatedWork W2566006169 @default.
- W2891656163 hasRelatedWork W2770234245 @default.
- W2891656163 hasRelatedWork W2785227142 @default.
- W2891656163 hasRelatedWork W2941957272 @default.
- W2891656163 hasRelatedWork W2987774938 @default.
- W2891656163 hasRelatedWork W4229499248 @default.
- W2891656163 hasRelatedWork W4378874356 @default.
- W2891656163 hasRelatedWork W572531444 @default.
- W2891656163 hasRelatedWork W632915154 @default.
- W2891656163 hasVolume "123" @default.
- W2891656163 isParatext "false" @default.
- W2891656163 isRetracted "false" @default.
- W2891656163 magId "2891656163" @default.
- W2891656163 workType "article" @default.