Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891656877> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2891656877 abstract "This paper is an experiment conducted on deep learning technique, which is currently popular and efficient in the field of image classification. The Convolutional Neural Networks (CNNs) has been achieved in many tasks of image classification and used to classify cloud images for meteorology task. The CNNs can be applied to classify rainmaking cloud images. There are three steps of warm clouds: fattening, attacking, and enhancing. The challenge in this work is the images required for classification are very similar. That means the sampling images are the images of cloud in the same type but difference at the formation stage, while the image shooting format and equipment is not fixed. The images are taken with varying degrees of angle, height, lightness and resolution. From the experimental results, it was found that CNNs had prominent characteristics for learning to extract the necessary attributes used in solving problem along with self-classification, leading to the developed model had higher accurate classification than traditional method around 5–8%." @default.
- W2891656877 created "2018-09-27" @default.
- W2891656877 creator A5002320059 @default.
- W2891656877 creator A5041324662 @default.
- W2891656877 creator A5080169353 @default.
- W2891656877 date "2018-07-01" @default.
- W2891656877 modified "2023-09-23" @default.
- W2891656877 title "Images Based Classification for Warm Cloud Rainmaking using Convolutional Neural Networks" @default.
- W2891656877 cites W1516354232 @default.
- W2891656877 cites W1686810756 @default.
- W2891656877 cites W1904365287 @default.
- W2891656877 cites W2034967418 @default.
- W2891656877 cites W2109538562 @default.
- W2891656877 cites W2163605009 @default.
- W2891656877 cites W2166672562 @default.
- W2891656877 cites W2508369391 @default.
- W2891656877 cites W2602844676 @default.
- W2891656877 cites W2964121744 @default.
- W2891656877 doi "https://doi.org/10.1109/jcsse.2018.8457398" @default.
- W2891656877 hasPublicationYear "2018" @default.
- W2891656877 type Work @default.
- W2891656877 sameAs 2891656877 @default.
- W2891656877 citedByCount "0" @default.
- W2891656877 crossrefType "proceedings-article" @default.
- W2891656877 hasAuthorship W2891656877A5002320059 @default.
- W2891656877 hasAuthorship W2891656877A5041324662 @default.
- W2891656877 hasAuthorship W2891656877A5080169353 @default.
- W2891656877 hasConcept C108583219 @default.
- W2891656877 hasConcept C111919701 @default.
- W2891656877 hasConcept C115961682 @default.
- W2891656877 hasConcept C153180895 @default.
- W2891656877 hasConcept C154945302 @default.
- W2891656877 hasConcept C202444582 @default.
- W2891656877 hasConcept C31972630 @default.
- W2891656877 hasConcept C33923547 @default.
- W2891656877 hasConcept C41008148 @default.
- W2891656877 hasConcept C52622490 @default.
- W2891656877 hasConcept C75294576 @default.
- W2891656877 hasConcept C79974875 @default.
- W2891656877 hasConcept C81363708 @default.
- W2891656877 hasConcept C9652623 @default.
- W2891656877 hasConceptScore W2891656877C108583219 @default.
- W2891656877 hasConceptScore W2891656877C111919701 @default.
- W2891656877 hasConceptScore W2891656877C115961682 @default.
- W2891656877 hasConceptScore W2891656877C153180895 @default.
- W2891656877 hasConceptScore W2891656877C154945302 @default.
- W2891656877 hasConceptScore W2891656877C202444582 @default.
- W2891656877 hasConceptScore W2891656877C31972630 @default.
- W2891656877 hasConceptScore W2891656877C33923547 @default.
- W2891656877 hasConceptScore W2891656877C41008148 @default.
- W2891656877 hasConceptScore W2891656877C52622490 @default.
- W2891656877 hasConceptScore W2891656877C75294576 @default.
- W2891656877 hasConceptScore W2891656877C79974875 @default.
- W2891656877 hasConceptScore W2891656877C81363708 @default.
- W2891656877 hasConceptScore W2891656877C9652623 @default.
- W2891656877 hasLocation W28916568771 @default.
- W2891656877 hasOpenAccess W2891656877 @default.
- W2891656877 hasPrimaryLocation W28916568771 @default.
- W2891656877 hasRelatedWork W2163969215 @default.
- W2891656877 hasRelatedWork W2732542196 @default.
- W2891656877 hasRelatedWork W2767651786 @default.
- W2891656877 hasRelatedWork W2774265021 @default.
- W2891656877 hasRelatedWork W2800691917 @default.
- W2891656877 hasRelatedWork W2807839383 @default.
- W2891656877 hasRelatedWork W2890064261 @default.
- W2891656877 hasRelatedWork W2940859255 @default.
- W2891656877 hasRelatedWork W3208181716 @default.
- W2891656877 hasRelatedWork W564581980 @default.
- W2891656877 isParatext "false" @default.
- W2891656877 isRetracted "false" @default.
- W2891656877 magId "2891656877" @default.
- W2891656877 workType "article" @default.