Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891657227> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2891657227 endingPage "1275" @default.
- W2891657227 startingPage "1268" @default.
- W2891657227 abstract "Warhead and decoy classification is one of the most important and difficult technical problems in ballistic missile defence. The conventional methods extract features from the measured data and employ some classification algorithms. However, it is hard to extract all the information embedded in the raw data, and there might be contradictory features lowering the classification ability. A one-dimensional convolutional neural network structure named RCSnet was proposed to classify the warhead and decoy targets of the same shape in midcourse, which directly utilises the radar cross-section (RCS) time series. It was compared with 5 conventional classification algorithms which used 26 selected features on simulation dataset, and it outperformed them in both classification performance and predicting speed. Different training algorithms and networks of the RCSnet structure with different filter numbers were explored for better utilising the RCSnet." @default.
- W2891657227 created "2018-09-27" @default.
- W2891657227 creator A5001391971 @default.
- W2891657227 creator A5039440798 @default.
- W2891657227 creator A5043648773 @default.
- W2891657227 date "2018-09-04" @default.
- W2891657227 modified "2023-09-25" @default.
- W2891657227 title "Convolutional neural network for classifying space target of the same shape by using RCS time series" @default.
- W2891657227 cites W1831113300 @default.
- W2891657227 cites W2037296933 @default.
- W2891657227 cites W2082794148 @default.
- W2891657227 cites W2085076247 @default.
- W2891657227 cites W2111579400 @default.
- W2891657227 cites W2159693394 @default.
- W2891657227 cites W2171762804 @default.
- W2891657227 cites W2414129030 @default.
- W2891657227 cites W2507782627 @default.
- W2891657227 cites W2790338783 @default.
- W2891657227 doi "https://doi.org/10.1049/iet-rsn.2018.5237" @default.
- W2891657227 hasPublicationYear "2018" @default.
- W2891657227 type Work @default.
- W2891657227 sameAs 2891657227 @default.
- W2891657227 citedByCount "23" @default.
- W2891657227 countsByYear W28916572272019 @default.
- W2891657227 countsByYear W28916572272020 @default.
- W2891657227 countsByYear W28916572272021 @default.
- W2891657227 countsByYear W28916572272022 @default.
- W2891657227 countsByYear W28916572272023 @default.
- W2891657227 crossrefType "journal-article" @default.
- W2891657227 hasAuthorship W2891657227A5001391971 @default.
- W2891657227 hasAuthorship W2891657227A5039440798 @default.
- W2891657227 hasAuthorship W2891657227A5043648773 @default.
- W2891657227 hasBestOaLocation W28916572271 @default.
- W2891657227 hasConcept C101457746 @default.
- W2891657227 hasConcept C106131492 @default.
- W2891657227 hasConcept C124101348 @default.
- W2891657227 hasConcept C127413603 @default.
- W2891657227 hasConcept C143724316 @default.
- W2891657227 hasConcept C146978453 @default.
- W2891657227 hasConcept C149617267 @default.
- W2891657227 hasConcept C151730666 @default.
- W2891657227 hasConcept C153180895 @default.
- W2891657227 hasConcept C154945302 @default.
- W2891657227 hasConcept C170493617 @default.
- W2891657227 hasConcept C185592680 @default.
- W2891657227 hasConcept C2778857364 @default.
- W2891657227 hasConcept C2779179475 @default.
- W2891657227 hasConcept C31972630 @default.
- W2891657227 hasConcept C41008148 @default.
- W2891657227 hasConcept C50644808 @default.
- W2891657227 hasConcept C554190296 @default.
- W2891657227 hasConcept C55493867 @default.
- W2891657227 hasConcept C76155785 @default.
- W2891657227 hasConcept C81363708 @default.
- W2891657227 hasConcept C86803240 @default.
- W2891657227 hasConceptScore W2891657227C101457746 @default.
- W2891657227 hasConceptScore W2891657227C106131492 @default.
- W2891657227 hasConceptScore W2891657227C124101348 @default.
- W2891657227 hasConceptScore W2891657227C127413603 @default.
- W2891657227 hasConceptScore W2891657227C143724316 @default.
- W2891657227 hasConceptScore W2891657227C146978453 @default.
- W2891657227 hasConceptScore W2891657227C149617267 @default.
- W2891657227 hasConceptScore W2891657227C151730666 @default.
- W2891657227 hasConceptScore W2891657227C153180895 @default.
- W2891657227 hasConceptScore W2891657227C154945302 @default.
- W2891657227 hasConceptScore W2891657227C170493617 @default.
- W2891657227 hasConceptScore W2891657227C185592680 @default.
- W2891657227 hasConceptScore W2891657227C2778857364 @default.
- W2891657227 hasConceptScore W2891657227C2779179475 @default.
- W2891657227 hasConceptScore W2891657227C31972630 @default.
- W2891657227 hasConceptScore W2891657227C41008148 @default.
- W2891657227 hasConceptScore W2891657227C50644808 @default.
- W2891657227 hasConceptScore W2891657227C554190296 @default.
- W2891657227 hasConceptScore W2891657227C55493867 @default.
- W2891657227 hasConceptScore W2891657227C76155785 @default.
- W2891657227 hasConceptScore W2891657227C81363708 @default.
- W2891657227 hasConceptScore W2891657227C86803240 @default.
- W2891657227 hasIssue "11" @default.
- W2891657227 hasLocation W28916572271 @default.
- W2891657227 hasOpenAccess W2891657227 @default.
- W2891657227 hasPrimaryLocation W28916572271 @default.
- W2891657227 hasRelatedWork W2005567777 @default.
- W2891657227 hasRelatedWork W2126079990 @default.
- W2891657227 hasRelatedWork W2146787327 @default.
- W2891657227 hasRelatedWork W2356428582 @default.
- W2891657227 hasRelatedWork W2367880521 @default.
- W2891657227 hasRelatedWork W2374967621 @default.
- W2891657227 hasRelatedWork W2375366075 @default.
- W2891657227 hasRelatedWork W2384810091 @default.
- W2891657227 hasRelatedWork W2534871514 @default.
- W2891657227 hasRelatedWork W4317651626 @default.
- W2891657227 hasVolume "12" @default.
- W2891657227 isParatext "false" @default.
- W2891657227 isRetracted "false" @default.
- W2891657227 magId "2891657227" @default.
- W2891657227 workType "article" @default.