Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891665498> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2891665498 abstract "Prediction of traffic congestions caused by excessive rush-hour traffic, accidents or road works, is an important issue of intelligent traffic management systems. The article will present a generative model of movement in a network of streets and intersections that enables to predict traffic congestions of an accidental or deterministic character. The model has a modular, hierarchical character. At the lowest level the model is microscopic and depicts the movement of vehicles, public transport and pedestrians at intersections and between them. It allows comparing real measurements with simulated data and attach data obtained from the learned neural network. At its higher level, the model reflects the traffic in a selected sub-area of the network of intersections. On this level the model is macroscopic, taking into account the parameters of vehicle streams. On both levels, the model is based on a generative deep neural network. A multi-layered neural network was chosen from many available deep architectures. In order to train this network the following methods were used: algorithms prepared for Restricted Boltzmann Machine and Deep Believe Network, as well as neighbourhood network. These architectures and methods adapt to the real dependencies of traffic much better and more accurately than traditional structures and methods of learning. Thanks to the mentioned solutions it is possible to eliminate damaged or incorrect data from data processing. One of the aims of the proposed model is to predict changes in the intensity traffic and traffic congestions in short-term forecasts, also in cases that have not yet occurred." @default.
- W2891665498 created "2018-09-27" @default.
- W2891665498 creator A5062178769 @default.
- W2891665498 date "2018-01-01" @default.
- W2891665498 modified "2023-10-02" @default.
- W2891665498 title "Prediction of Urban Traffic Flow Based on Generative Neural Network Model" @default.
- W2891665498 cites W1509628602 @default.
- W2891665498 cites W1570770538 @default.
- W2891665498 cites W1984328578 @default.
- W2891665498 cites W1990611565 @default.
- W2891665498 cites W2062017159 @default.
- W2891665498 cites W2083022762 @default.
- W2891665498 cites W2131767615 @default.
- W2891665498 cites W2136922672 @default.
- W2891665498 cites W2283113811 @default.
- W2891665498 cites W2467914952 @default.
- W2891665498 cites W2579495707 @default.
- W2891665498 cites W28988658 @default.
- W2891665498 cites W3104764698 @default.
- W2891665498 cites W4241942980 @default.
- W2891665498 doi "https://doi.org/10.1007/978-3-319-97955-7_1" @default.
- W2891665498 hasPublicationYear "2018" @default.
- W2891665498 type Work @default.
- W2891665498 sameAs 2891665498 @default.
- W2891665498 citedByCount "0" @default.
- W2891665498 crossrefType "book-chapter" @default.
- W2891665498 hasAuthorship W2891665498A5062178769 @default.
- W2891665498 hasConcept C108583219 @default.
- W2891665498 hasConcept C119857082 @default.
- W2891665498 hasConcept C124101348 @default.
- W2891665498 hasConcept C127413603 @default.
- W2891665498 hasConcept C154945302 @default.
- W2891665498 hasConcept C158379750 @default.
- W2891665498 hasConcept C167966045 @default.
- W2891665498 hasConcept C176715033 @default.
- W2891665498 hasConcept C201100257 @default.
- W2891665498 hasConcept C207512268 @default.
- W2891665498 hasConcept C22212356 @default.
- W2891665498 hasConcept C2779888511 @default.
- W2891665498 hasConcept C31258907 @default.
- W2891665498 hasConcept C39890363 @default.
- W2891665498 hasConcept C41008148 @default.
- W2891665498 hasConcept C50644808 @default.
- W2891665498 hasConcept C64093975 @default.
- W2891665498 hasConcept C67186912 @default.
- W2891665498 hasConcept C77088390 @default.
- W2891665498 hasConcept C79403827 @default.
- W2891665498 hasConcept C94168897 @default.
- W2891665498 hasConceptScore W2891665498C108583219 @default.
- W2891665498 hasConceptScore W2891665498C119857082 @default.
- W2891665498 hasConceptScore W2891665498C124101348 @default.
- W2891665498 hasConceptScore W2891665498C127413603 @default.
- W2891665498 hasConceptScore W2891665498C154945302 @default.
- W2891665498 hasConceptScore W2891665498C158379750 @default.
- W2891665498 hasConceptScore W2891665498C167966045 @default.
- W2891665498 hasConceptScore W2891665498C176715033 @default.
- W2891665498 hasConceptScore W2891665498C201100257 @default.
- W2891665498 hasConceptScore W2891665498C207512268 @default.
- W2891665498 hasConceptScore W2891665498C22212356 @default.
- W2891665498 hasConceptScore W2891665498C2779888511 @default.
- W2891665498 hasConceptScore W2891665498C31258907 @default.
- W2891665498 hasConceptScore W2891665498C39890363 @default.
- W2891665498 hasConceptScore W2891665498C41008148 @default.
- W2891665498 hasConceptScore W2891665498C50644808 @default.
- W2891665498 hasConceptScore W2891665498C64093975 @default.
- W2891665498 hasConceptScore W2891665498C67186912 @default.
- W2891665498 hasConceptScore W2891665498C77088390 @default.
- W2891665498 hasConceptScore W2891665498C79403827 @default.
- W2891665498 hasConceptScore W2891665498C94168897 @default.
- W2891665498 hasLocation W28916654981 @default.
- W2891665498 hasOpenAccess W2891665498 @default.
- W2891665498 hasPrimaryLocation W28916654981 @default.
- W2891665498 hasRelatedWork W2059128538 @default.
- W2891665498 hasRelatedWork W2394010358 @default.
- W2891665498 hasRelatedWork W2540457151 @default.
- W2891665498 hasRelatedWork W2558469811 @default.
- W2891665498 hasRelatedWork W2764195644 @default.
- W2891665498 hasRelatedWork W2806123914 @default.
- W2891665498 hasRelatedWork W2904346290 @default.
- W2891665498 hasRelatedWork W2937569665 @default.
- W2891665498 hasRelatedWork W2952355076 @default.
- W2891665498 hasRelatedWork W2978023058 @default.
- W2891665498 hasRelatedWork W2987254731 @default.
- W2891665498 hasRelatedWork W2994901268 @default.
- W2891665498 hasRelatedWork W3025175085 @default.
- W2891665498 hasRelatedWork W3046284843 @default.
- W2891665498 hasRelatedWork W3125445645 @default.
- W2891665498 hasRelatedWork W3131310266 @default.
- W2891665498 hasRelatedWork W3139828765 @default.
- W2891665498 hasRelatedWork W3158058297 @default.
- W2891665498 hasRelatedWork W3161393127 @default.
- W2891665498 hasRelatedWork W615665430 @default.
- W2891665498 isParatext "false" @default.
- W2891665498 isRetracted "false" @default.
- W2891665498 magId "2891665498" @default.
- W2891665498 workType "book-chapter" @default.