Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891667148> ?p ?o ?g. }
- W2891667148 endingPage "24" @default.
- W2891667148 startingPage "18" @default.
- W2891667148 abstract "Manual approaches to recognize cucumber diseases are often time-consuming, laborious and subjective. A deep convolutional neural network (DCNN) was proposed to conduct symptom-wise recognition of four cucumber diseases, i.e., anthracnose, downy mildew, powdery mildew, and target leaf spots. The symptom images were segmented from cucumber leaf images captured under field conditions. In order to decrease the chance of overfitting, data augmentation methods were utilized to enlarge the datasets formed by the segmented symptom images. With the augmented datasets containing 14,208 symptom images, the DCNN achieved good recognition results, with an accuracy of 93.4%. In order to compare the results of the DCNN, comparative experiments were conducted using conventional classifiers (Random Forest and Support Vector Machines), as well as AlexNet. Results showed that the DCNN was a robust tool for recognizing the cucumber diseases in field conditions." @default.
- W2891667148 created "2018-09-27" @default.
- W2891667148 creator A5030316088 @default.
- W2891667148 creator A5034169766 @default.
- W2891667148 creator A5043393347 @default.
- W2891667148 creator A5047058981 @default.
- W2891667148 creator A5052585993 @default.
- W2891667148 creator A5053817012 @default.
- W2891667148 date "2018-11-01" @default.
- W2891667148 modified "2023-10-14" @default.
- W2891667148 title "A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network" @default.
- W2891667148 cites W1963882359 @default.
- W2891667148 cites W2005543329 @default.
- W2891667148 cites W2037186755 @default.
- W2891667148 cites W2058533835 @default.
- W2891667148 cites W2073754472 @default.
- W2891667148 cites W2101253767 @default.
- W2891667148 cites W2103959917 @default.
- W2891667148 cites W2112796928 @default.
- W2891667148 cites W2277854822 @default.
- W2891667148 cites W2285671993 @default.
- W2891667148 cites W2470803522 @default.
- W2891667148 cites W2520364485 @default.
- W2891667148 cites W2579348194 @default.
- W2891667148 cites W2585286277 @default.
- W2891667148 cites W2599933295 @default.
- W2891667148 cites W2617703913 @default.
- W2891667148 cites W2625680238 @default.
- W2891667148 cites W2657746852 @default.
- W2891667148 cites W2751829817 @default.
- W2891667148 cites W2789255992 @default.
- W2891667148 cites W2911964244 @default.
- W2891667148 cites W2917559222 @default.
- W2891667148 cites W4239510810 @default.
- W2891667148 doi "https://doi.org/10.1016/j.compag.2018.08.048" @default.
- W2891667148 hasPublicationYear "2018" @default.
- W2891667148 type Work @default.
- W2891667148 sameAs 2891667148 @default.
- W2891667148 citedByCount "306" @default.
- W2891667148 countsByYear W28916671482019 @default.
- W2891667148 countsByYear W28916671482020 @default.
- W2891667148 countsByYear W28916671482021 @default.
- W2891667148 countsByYear W28916671482022 @default.
- W2891667148 countsByYear W28916671482023 @default.
- W2891667148 crossrefType "journal-article" @default.
- W2891667148 hasAuthorship W2891667148A5030316088 @default.
- W2891667148 hasAuthorship W2891667148A5034169766 @default.
- W2891667148 hasAuthorship W2891667148A5043393347 @default.
- W2891667148 hasAuthorship W2891667148A5047058981 @default.
- W2891667148 hasAuthorship W2891667148A5052585993 @default.
- W2891667148 hasAuthorship W2891667148A5053817012 @default.
- W2891667148 hasConcept C119857082 @default.
- W2891667148 hasConcept C12267149 @default.
- W2891667148 hasConcept C144027150 @default.
- W2891667148 hasConcept C153180895 @default.
- W2891667148 hasConcept C154945302 @default.
- W2891667148 hasConcept C202444582 @default.
- W2891667148 hasConcept C22019652 @default.
- W2891667148 hasConcept C2779336322 @default.
- W2891667148 hasConcept C2780087670 @default.
- W2891667148 hasConcept C33923547 @default.
- W2891667148 hasConcept C41008148 @default.
- W2891667148 hasConcept C50644808 @default.
- W2891667148 hasConcept C81363708 @default.
- W2891667148 hasConcept C86803240 @default.
- W2891667148 hasConcept C9652623 @default.
- W2891667148 hasConceptScore W2891667148C119857082 @default.
- W2891667148 hasConceptScore W2891667148C12267149 @default.
- W2891667148 hasConceptScore W2891667148C144027150 @default.
- W2891667148 hasConceptScore W2891667148C153180895 @default.
- W2891667148 hasConceptScore W2891667148C154945302 @default.
- W2891667148 hasConceptScore W2891667148C202444582 @default.
- W2891667148 hasConceptScore W2891667148C22019652 @default.
- W2891667148 hasConceptScore W2891667148C2779336322 @default.
- W2891667148 hasConceptScore W2891667148C2780087670 @default.
- W2891667148 hasConceptScore W2891667148C33923547 @default.
- W2891667148 hasConceptScore W2891667148C41008148 @default.
- W2891667148 hasConceptScore W2891667148C50644808 @default.
- W2891667148 hasConceptScore W2891667148C81363708 @default.
- W2891667148 hasConceptScore W2891667148C86803240 @default.
- W2891667148 hasConceptScore W2891667148C9652623 @default.
- W2891667148 hasLocation W28916671481 @default.
- W2891667148 hasOpenAccess W2891667148 @default.
- W2891667148 hasPrimaryLocation W28916671481 @default.
- W2891667148 hasRelatedWork W1574414179 @default.
- W2891667148 hasRelatedWork W1586695295 @default.
- W2891667148 hasRelatedWork W2372231533 @default.
- W2891667148 hasRelatedWork W2387681956 @default.
- W2891667148 hasRelatedWork W2922073769 @default.
- W2891667148 hasRelatedWork W3210714768 @default.
- W2891667148 hasRelatedWork W4281702477 @default.
- W2891667148 hasRelatedWork W4297676672 @default.
- W2891667148 hasRelatedWork W4362597605 @default.
- W2891667148 hasRelatedWork W2959764853 @default.
- W2891667148 hasVolume "154" @default.
- W2891667148 isParatext "false" @default.
- W2891667148 isRetracted "false" @default.
- W2891667148 magId "2891667148" @default.