Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891668083> ?p ?o ?g. }
- W2891668083 abstract "Modern experimental techniques deliver data sets containing profiles of tens of thousands of potential molecular and genetic markers that can be used to improve medical diagnostics. Previous studies performed with three different experimental methods for the same set of neuroblastoma patients create opportunity to examine whether augmenting gene expression profiles with information on copy number variation can lead to improved predictions of patients survival. We propose methodology based on comprehensive cross-validation protocol, that includes feature selection within cross-validation loop and classification using machine learning. We also test dependence of results on the feature selection process using four different feature selection methods.The models utilising features selected based on information entropy are slightly, but significantly, better than those using features obtained with t-test. The synergy between data on genetic variation and gene expression is possible, but not confirmed. A slight, but statistically significant, increase of the predictive power of machine learning models has been observed for models built on combined data sets. It was found while using both out of bag estimate and in cross-validation performed on a single set of variables. However, the improvement was smaller and non-significant when models were built within full cross-validation procedure that included feature selection within cross-validation loop. Good correlation between performance of the models in the internal and external cross-validation was observed, confirming the robustness of the proposed protocol and results.We have developed a protocol for building predictive machine learning models. The protocol can provide robust estimates of the model performance on unseen data. It is particularly well-suited for small data sets. We have applied this protocol to develop prognostic models for neuroblastoma, using data on copy number variation and gene expression. We have shown that combining these two sources of information may increase the quality of the models. Nevertheless, the increase is small and larger samples are required to reduce noise and bias arising due to overfitting.This article was reviewed by Lan Hu, Tim Beissbarth and Dimitar Vassilev." @default.
- W2891668083 created "2018-09-27" @default.
- W2891668083 creator A5020286403 @default.
- W2891668083 creator A5028905284 @default.
- W2891668083 creator A5065166985 @default.
- W2891668083 creator A5076071146 @default.
- W2891668083 creator A5080738640 @default.
- W2891668083 date "2018-01-01" @default.
- W2891668083 modified "2023-10-08" @default.
- W2891668083 title "Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival" @default.
- W2891668083 cites W1520812622 @default.
- W2891668083 cites W1593688184 @default.
- W2891668083 cites W1802186924 @default.
- W2891668083 cites W1973094248 @default.
- W2891668083 cites W1973956579 @default.
- W2891668083 cites W1974879832 @default.
- W2891668083 cites W1981922164 @default.
- W2891668083 cites W1987002276 @default.
- W2891668083 cites W1998401098 @default.
- W2891668083 cites W2009814207 @default.
- W2891668083 cites W2017337590 @default.
- W2891668083 cites W2017522364 @default.
- W2891668083 cites W2020147936 @default.
- W2891668083 cites W2044863747 @default.
- W2891668083 cites W2050063758 @default.
- W2891668083 cites W2064113732 @default.
- W2891668083 cites W2064397275 @default.
- W2891668083 cites W2080018207 @default.
- W2891668083 cites W2095907724 @default.
- W2891668083 cites W2100941248 @default.
- W2891668083 cites W2109553965 @default.
- W2891668083 cites W2115012618 @default.
- W2891668083 cites W2118561568 @default.
- W2891668083 cites W2119394523 @default.
- W2891668083 cites W2124140824 @default.
- W2891668083 cites W2131822674 @default.
- W2891668083 cites W2133138357 @default.
- W2891668083 cites W2137499573 @default.
- W2891668083 cites W2138983295 @default.
- W2891668083 cites W2154053567 @default.
- W2891668083 cites W2156683768 @default.
- W2891668083 cites W2340589369 @default.
- W2891668083 cites W2525257992 @default.
- W2891668083 cites W2527887165 @default.
- W2891668083 cites W2530623388 @default.
- W2891668083 cites W2586610307 @default.
- W2891668083 cites W2593086047 @default.
- W2891668083 cites W2758340672 @default.
- W2891668083 cites W2771169143 @default.
- W2891668083 cites W2911964244 @default.
- W2891668083 doi "https://doi.org/10.1186/s13062-018-0222-9" @default.
- W2891668083 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6148774" @default.
- W2891668083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30236139" @default.
- W2891668083 hasPublicationYear "2018" @default.
- W2891668083 type Work @default.
- W2891668083 sameAs 2891668083 @default.
- W2891668083 citedByCount "8" @default.
- W2891668083 countsByYear W28916680832019 @default.
- W2891668083 countsByYear W28916680832020 @default.
- W2891668083 crossrefType "journal-article" @default.
- W2891668083 hasAuthorship W2891668083A5020286403 @default.
- W2891668083 hasAuthorship W2891668083A5028905284 @default.
- W2891668083 hasAuthorship W2891668083A5065166985 @default.
- W2891668083 hasAuthorship W2891668083A5076071146 @default.
- W2891668083 hasAuthorship W2891668083A5080738640 @default.
- W2891668083 hasBestOaLocation W28916680831 @default.
- W2891668083 hasConcept C104317684 @default.
- W2891668083 hasConcept C117220453 @default.
- W2891668083 hasConcept C119857082 @default.
- W2891668083 hasConcept C124101348 @default.
- W2891668083 hasConcept C142724271 @default.
- W2891668083 hasConcept C148483581 @default.
- W2891668083 hasConcept C154945302 @default.
- W2891668083 hasConcept C169903167 @default.
- W2891668083 hasConcept C177264268 @default.
- W2891668083 hasConcept C199360897 @default.
- W2891668083 hasConcept C204787440 @default.
- W2891668083 hasConcept C2524010 @default.
- W2891668083 hasConcept C27181475 @default.
- W2891668083 hasConcept C2780385302 @default.
- W2891668083 hasConcept C33923547 @default.
- W2891668083 hasConcept C41008148 @default.
- W2891668083 hasConcept C45804977 @default.
- W2891668083 hasConcept C55493867 @default.
- W2891668083 hasConcept C58489278 @default.
- W2891668083 hasConcept C63479239 @default.
- W2891668083 hasConcept C71924100 @default.
- W2891668083 hasConcept C86803240 @default.
- W2891668083 hasConceptScore W2891668083C104317684 @default.
- W2891668083 hasConceptScore W2891668083C117220453 @default.
- W2891668083 hasConceptScore W2891668083C119857082 @default.
- W2891668083 hasConceptScore W2891668083C124101348 @default.
- W2891668083 hasConceptScore W2891668083C142724271 @default.
- W2891668083 hasConceptScore W2891668083C148483581 @default.
- W2891668083 hasConceptScore W2891668083C154945302 @default.
- W2891668083 hasConceptScore W2891668083C169903167 @default.
- W2891668083 hasConceptScore W2891668083C177264268 @default.
- W2891668083 hasConceptScore W2891668083C199360897 @default.
- W2891668083 hasConceptScore W2891668083C204787440 @default.
- W2891668083 hasConceptScore W2891668083C2524010 @default.