Matches in SemOpenAlex for { <https://semopenalex.org/work/W2891669248> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2891669248 endingPage "463" @default.
- W2891669248 startingPage "455" @default.
- W2891669248 abstract "Multi-modal neuroimages (e.g., MRI and PET) have been widely used for diagnosis of brain diseases such as Alzheimer’s disease (AD) by providing complementary information. However, in practice, it is unavoidable to have missing data, i.e., missing PET data for many subjects in the ADNI dataset. A straightforward strategy to tackle this challenge is to simply discard subjects with missing PET, but this will significantly reduce the number of training subjects for learning reliable diagnostic models. On the other hand, since different modalities (i.e., MRI and PET) were acquired from the same subject, there often exist underlying relevance between different modalities. Accordingly, we propose a two-stage deep learning framework for AD diagnosis using both MRI and PET data. Specifically, in the first stage, we impute missing PET data based on their corresponding MRI data by using 3D Cycle-consistent Generative Adversarial Networks (3D-cGAN) to capture their underlying relationship. In the second stage, with the complete MRI and PET (i.e., after imputation for the case of missing PET), we develop a deep multi-instance neural network for AD diagnosis and also mild cognitive impairment (MCI) conversion prediction. Experimental results on subjects from ADNI demonstrate that our synthesized PET images with 3D-cGAN are reasonable, and also our two-stage deep learning method outperforms the state-of-the-art methods in AD diagnosis." @default.
- W2891669248 created "2018-09-27" @default.
- W2891669248 creator A5000937401 @default.
- W2891669248 creator A5005676360 @default.
- W2891669248 creator A5034520275 @default.
- W2891669248 creator A5050560717 @default.
- W2891669248 creator A5061274720 @default.
- W2891669248 creator A5077300873 @default.
- W2891669248 date "2018-01-01" @default.
- W2891669248 modified "2023-10-16" @default.
- W2891669248 title "Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer’s Disease Diagnosis" @default.
- W2891669248 cites W2000292092 @default.
- W2891669248 cites W2078524519 @default.
- W2891669248 cites W2109553965 @default.
- W2891669248 cites W2119848633 @default.
- W2891669248 cites W2194775991 @default.
- W2891669248 cites W2463258885 @default.
- W2891669248 cites W2555500380 @default.
- W2891669248 cites W2739799890 @default.
- W2891669248 cites W2765366332 @default.
- W2891669248 cites W2962793481 @default.
- W2891669248 cites W4250589301 @default.
- W2891669248 doi "https://doi.org/10.1007/978-3-030-00931-1_52" @default.
- W2891669248 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8336606" @default.
- W2891669248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34355223" @default.
- W2891669248 hasPublicationYear "2018" @default.
- W2891669248 type Work @default.
- W2891669248 sameAs 2891669248 @default.
- W2891669248 citedByCount "82" @default.
- W2891669248 countsByYear W28916692482018 @default.
- W2891669248 countsByYear W28916692482019 @default.
- W2891669248 countsByYear W28916692482020 @default.
- W2891669248 countsByYear W28916692482021 @default.
- W2891669248 countsByYear W28916692482022 @default.
- W2891669248 countsByYear W28916692482023 @default.
- W2891669248 crossrefType "book-chapter" @default.
- W2891669248 hasAuthorship W2891669248A5000937401 @default.
- W2891669248 hasAuthorship W2891669248A5005676360 @default.
- W2891669248 hasAuthorship W2891669248A5034520275 @default.
- W2891669248 hasAuthorship W2891669248A5050560717 @default.
- W2891669248 hasAuthorship W2891669248A5061274720 @default.
- W2891669248 hasAuthorship W2891669248A5077300873 @default.
- W2891669248 hasBestOaLocation W28916692482 @default.
- W2891669248 hasConcept C108583219 @default.
- W2891669248 hasConcept C119857082 @default.
- W2891669248 hasConcept C142724271 @default.
- W2891669248 hasConcept C144024400 @default.
- W2891669248 hasConcept C153180895 @default.
- W2891669248 hasConcept C154945302 @default.
- W2891669248 hasConcept C2779134260 @default.
- W2891669248 hasConcept C2779903281 @default.
- W2891669248 hasConcept C2984915365 @default.
- W2891669248 hasConcept C2988773926 @default.
- W2891669248 hasConcept C36289849 @default.
- W2891669248 hasConcept C39890363 @default.
- W2891669248 hasConcept C41008148 @default.
- W2891669248 hasConcept C50644808 @default.
- W2891669248 hasConcept C71924100 @default.
- W2891669248 hasConcept C9357733 @default.
- W2891669248 hasConceptScore W2891669248C108583219 @default.
- W2891669248 hasConceptScore W2891669248C119857082 @default.
- W2891669248 hasConceptScore W2891669248C142724271 @default.
- W2891669248 hasConceptScore W2891669248C144024400 @default.
- W2891669248 hasConceptScore W2891669248C153180895 @default.
- W2891669248 hasConceptScore W2891669248C154945302 @default.
- W2891669248 hasConceptScore W2891669248C2779134260 @default.
- W2891669248 hasConceptScore W2891669248C2779903281 @default.
- W2891669248 hasConceptScore W2891669248C2984915365 @default.
- W2891669248 hasConceptScore W2891669248C2988773926 @default.
- W2891669248 hasConceptScore W2891669248C36289849 @default.
- W2891669248 hasConceptScore W2891669248C39890363 @default.
- W2891669248 hasConceptScore W2891669248C41008148 @default.
- W2891669248 hasConceptScore W2891669248C50644808 @default.
- W2891669248 hasConceptScore W2891669248C71924100 @default.
- W2891669248 hasConceptScore W2891669248C9357733 @default.
- W2891669248 hasLocation W28916692481 @default.
- W2891669248 hasLocation W28916692482 @default.
- W2891669248 hasOpenAccess W2891669248 @default.
- W2891669248 hasPrimaryLocation W28916692481 @default.
- W2891669248 hasRelatedWork W2845413374 @default.
- W2891669248 hasRelatedWork W2888032422 @default.
- W2891669248 hasRelatedWork W2972144487 @default.
- W2891669248 hasRelatedWork W2996316059 @default.
- W2891669248 hasRelatedWork W3005996785 @default.
- W2891669248 hasRelatedWork W3178813832 @default.
- W2891669248 hasRelatedWork W4226298148 @default.
- W2891669248 hasRelatedWork W4297411772 @default.
- W2891669248 hasRelatedWork W4327672426 @default.
- W2891669248 hasRelatedWork W4377980832 @default.
- W2891669248 isParatext "false" @default.
- W2891669248 isRetracted "false" @default.
- W2891669248 magId "2891669248" @default.
- W2891669248 workType "book-chapter" @default.